
Texture Cache Approximation on GPUs
Mark Sutherland

Joshua San Miguel
Natalie Enright Jerger

{suther68,enright}@ece.utoronto.ca, joshua.sanmiguel@mail.utoronto.ca

1

2

C
ac

he
C

ac
he

C
ac

he
C

ac
heGPU

Core

Main
Memory

On-Chip
Network,
Shared
Caches

Our Contribution

Problem: High memory latency
requires thread swapping.

3

C
ac

he
C

ac
he

C
ac

he
C

ac
heGPU

Core

Main
Memory

On-Chip
Network,
Shared
Caches

Texture
Cache

Our Contribution

Avoid main memory accesses by
generating approximate values
on-chip.

Load Value Approximation

4
Figure from “Load Value Approximation”, Joshua San Miguel, Mario Badr, Natalie Enright Jerger

Load Value Approximation

5
Figure from “Load Value Approximation”, Joshua San Miguel, Mario Badr, Natalie Enright Jerger

Load Value Approximation

6
Figure from “Load Value Approximation”, Joshua San Miguel, Mario Badr, Natalie Enright Jerger

Goal: Use off-the-shelf GPU hardware to implement
massively parallel value approximation.

7

• Images are comprised of polygons, which the GPU fills using shaders.
• Example: Rendering a brick wall.
• Without a texture, the GPU can fill a polygon with a solid colour, or a gradient spanning from

one vertex to another.
• Textures allow you to draw the whole wall, without filling N polygons for each brick.

What is a Texture?

Single-polygon (rectangle) Single-polygon w. texture

?

8 Source: http://upload.wikimedia.org/wikipedia/commons/2/28/-
_Brickwall_01_-.jpg (Creative Commons)

Multi-polygon solid

…

http://upload.wikimedia.org/wikipedia/commons/2/28/-_Brickwall_01_-.jpg

• 12kB dedicated cache per SM, 4
dedicated fetch/interpolation units.

• Texture Unit Features:
• Interpolating between data values,

wrapping out-of-bounds indexes.
• Caveat: Texture memory is read-only.

Texture Hardware

9

Figure source: M. Doggett. Texture caches. IEEE Micro, 32(3):136–141, May 2012.

Streaming
Multiprocessor

(Core)

Texture Cache Approximation

10

1. Analyze the data values read by each GPU thread, and
build a training set from repetitive patterns in this data.

2. Before GPU execution, load the texture cache with this
training set.

3. Replace memory accesses with approximations derived
from the texture cache.

• Want our approximations to be compact, so they fit in the
texture cache, as well as portable to many value patterns.

• Each approximation is the sum of the last data value, and a
delta approximation from the texture cache:
• Xapx = Xlast + Dapx

11

Cache Contents

Example: Image access pattern

1. Upon accessing P4, thread
inspects its LHB and calculates the
last delta.

2. Baseline code then reads P4 from
memory, and calculates the current
delta.

3. Output a pair to the trace: [Dl,Dc]

12

Training Set Generation
Dl = -2

13

Training Set Generation
Example: Image access pattern

1. Upon accessing P4, thread
inspects its LHB and calculates the
last delta.

2. Baseline code then reads P4 from
memory, and calculates the current
delta.

3. Output a pair to the trace: [Dl,Dc]

Dc = 1
P4 = 4

14

Training Set Generation
Example: Image access pattern

1. Upon accessing P4, thread
inspects its LHB and calculates the
last delta.

2. Baseline code then reads P4 from
memory, and calculates the current
delta.

3. Output a pair to the trace: [Dl,Dc]

[Dl,Dc] = [-2,1]

Kernel Code Transformation
foreach (pixel in 4x4 grid) {

foreach (neighbour pixel) {
… = a[neighbor];
}
b[pix] = … ;

}

Characteristic Loop
(per thread)

Loop Body
(exact data)

15

Kernel Code Transformation
foreach (pixel in 4x3 grid) {

… = a[neighbor];
updateLHB();

}

Characteristic Loop
(per thread)

Loop Body
(exact w. update)

16

foreach (pixel in last row) {
… = LHB[0] + texture[getIndex()];
updateLHB();

}

Epilogue Loop
(with approx)

17

Online Approximations
… = LHB[0] + texture[getIndex()];

In-Core Activity Texture Cache

…
…
… Age

0
2
10

LHB’s

Thread 1 reaches
texture reference.

Index Value

0 1
1 4
2 8
3 -2

18

Online Approximations
In-Core Activity Texture Cache

…
…
… Age

0
2
10

LHB’s

Calculate:
Dlast= -2

Index Value

0 1
1 4
2 8
3 -2

… = LHB[0] + texture[getIndex()];

19

Online Approximations
In-Core Activity Texture Cache

…
…
… Age

0
2
10

LHB’s

Normalize:
Index = 0

Index Value

0 1
1 4
2 8
3 -2

… = LHB[0] + texture[0];

20

Online Approximations
In-Core Activity Texture Cache

…
…
… Age

0
2
10

LHB’s

Access:
texture[0]

Index Value

0 1
1 4
2 8
3 -2

… = LHB[0] + texture[0];

21

Online Approximations
In-Core Activity Texture Cache

…
…
… Age

0
2
10

LHB’s

Return:
Dapx = 1

Index Value

0 1
1 4
2 8
3 -2

… = 0 + 1;

• Commodity hardware: NVIDIA 780GTX GPU (Kepler u-architecture)
• Image blur kernel derived from San Diego Computer Vision

Benchmark Suite [Venkata, IISWC ’09].
• Use CUDA Toolkit Profiler to measure:

• Kernel runtime (cycles), texture cache hit rate.
• Error metric: Mean Pixel Difference [Samadi, MICRO ’13]

22

Evaluation

• Replaced X global memory reads (baseline has 5).
• Texture cache hit rate: > 99% in all cases.

23

Kernel Runtime

0.80

0.85

0.90

0.95

1.00

1.05

baseline texture-20% texture-40% texture-60%

n
o

rm
al

iz
ed

 r
u

n
ti

m
e

Better

24

Image Comparison
Exact Approximate

Error: 0.4%
Image source: Nature stock footage archive. http://downloadnatureclip.
blogspot.ca/p/download-links.html. Accessed: 2015-03-28.

25

Error Evolution

0.8

0.9

1

1.1

1.2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

er
ro

r
(m

ea
n

 p
ix

el
 d

if
f)

frame

• Used same training set (from F1) for 16 images in a video sequence,
evaluated error with 40% of loads replaced.

• Evaluate on applications from different application
domains: machine learning, physics & fluid simulations,
data queries.

• Can we eliminate the need for training sets?
• Improve speedup on floating point benchmarks.

26

Future Work

Conclusion:
Under-utilized texture hardware on GPUs can be used to
accelerate kernel execution using value approximation.

27

28

?

29

30

Comparison to Reduced Blur

Image source: Nature stock footage archive. http://downloadnatureclip.
blogspot.ca/p/download-links.html. Accessed: 2015-03-28.

Large Radius Small Radius

Approximate Value Computing

31

1. Certain applications are robust to inexact data values.
• Data mining and pattern recognition [Chippa, DAC ’13]

2. Where can these values come from?
• Reduced-voltage DRAM [Liu, ASPLOS ’12]
• Kernels edited to remove synchronization [Samadi, MICRO ’13]
• Load Value Approximation [San Miguel, MICRO ’14]

Why Approximate?
1. GPU memory architecture has similar drawbacks to that of a CPU.

2. Modern GPU’s choose to hide latency with thread swapping and
context storage.
• Could easily put these transistors to better use!

32

1. Give every thread its own Local History
Buffer (LHB) in shared memory.

2. Upon every memory access, output the
previous and next deltas to a trace.

• This allows us to analyze different value
patterns, and generate approximations that
are accurate for many thread blocks.

33

Training Set Generation

…
…
…
…

…

Thread Blocks

Shared Memory

Older
ValuesPrivate LHB

Kernel Code Transformation
foreach (pixel in 4x3 grid) {

foreach (neighbour pixel) {
… = a[np];
updateLHB(a[np]);

}
b[p] = … ;

}
foreach (pixels left in 4x1 stripe) {

…
}

Characteristic Loop
(per thread)

Loop Body
(exact w. update)

Epilogue Loop
Body

34

Kernel Code Transformation
foreach (pixel in 4x3 grid) {

…
updateLHB(a[np]);

}
foreach (pixels left in 4x1 stripe) {

foreach(neighbour pixel) {
… = getTexture(my_tex, getDeltaFromLHB());
updateLHB(…);

}
b[p] = … ;

}

Loop Body
(exact w. update)

Epilogue Loop
Body

(replace loads with
texture references)

35

Processing Continuum

Multi-Core CPUAccelerator1

C
ac

he
C

ac
he

C
ac

he
C

ac
heCore

Shared
Cache(s)

On-Chip
Network

1. Source: www.newsroom.intel.com/community/intel_newsroom36

http://www.newsroom.intel.com/community/intel_newsroom

GPU Niche
GPGPU

Characteristics
• Massively multi-core.
• Trades latency for throughput.
• Very few optimizations for single-

thread performance.

GS

Source: http://www.nvidia.com/content/PDF/fermi_white_papers/NVIDIA_Fermi_Compute_Architecture_Whitepaper.pdf37

http://www.nvidia.com/content/PDF/fermi_white_papers/NVIDIA_Fermi_Compute_Architecture_Whitepaper.pdf

