Approximating Outside the Processor

Phillip Stanley-Marbell and Martin Rinard
psm@mit.edu

Approximating Outside the Processor

Approximating Outside the Processor

320x320 AMOLED Display, 24 bits per pixel color

Sensors/Displays Dominate Power Dissipation in Wearables

(Note: sectors scaled logarithmically due to large range of values)
To improve system-wide energy-efficiency, focus on the dominant fraction

Approximating Outside the Processor

We make three arguments, in light of these observations

For sensor-driven system such as wearables and "internet-of-(every)things"
(1) Explore approximation in sensors / inputs
(2) Explore approximation in displays / outputs / communication

Across all system types:
(3 What are bounds on benefit from reducing precision, accuracy, reliability/certainty? (If best-case achievable gains are small, why bother...)

(1) Approximate Inputs

Errors (per 10^{3} Readings)

A

TI TMP006
IR Temperature
Sensor

Errors (per 10^{3} Readings)

(1) Approximate Inputs

TI TMP006
IR Temperature
Sensor

(1) Approximate Inputs

[^0]
(2) Approximate Outputs / Communication

Serial communication interface/bus driver

```
* 000000000000000 [11110011100000000...
    Time
```


More transitions : more dynamic power dissipation

 \(s=64_{10}=\stackrel{l=8}{\stackrel{0}{0} 000000_{2}}\)

(3 Bounds: How Badly (and Often) Do Values Deviate?

Count of cases is given by number of solutions to Diophantine equation pair:
(w and v are two L-bit words)

$$
\left|\sum_{i=0}^{L-1} w_{i} 2^{i}-\sum_{i=0}^{L-1} v_{i} 2^{i}\right|=m
$$

$$
\sum_{i=0}^{L-1}\left(w_{i}\left(1-v_{i}\right)+v_{i}\left(1-w_{i}\right)\right)=k
$$

An upper bound on number of cases is $2^{L+1}-2 m$ (shaded gray region in plots above)

Position Statement, Conclusions, Q\&A

Approximating Outside the Processor

(1) We should focus on the domains that will be important in the future
(2) For the important domains, we should focus on bottlenecks
(3) For the growing domain of loT/wearables: sensors, displays, communication
(4) Understanding upper limits of benefits informs choice of realistic techniques

Position Statement, Conclusions, Q\&A

Approximating Outside the Processor

(1) We should focus on the domains that will be important in the future
(2) For the important domains, we should focus on bottlenecks
(3) For the growing domain of loT/wearables: sensors, displays, communication
(4) Understanding upper limits of benefits informs choice of realistic techniques

Rake

[^0]: P. Stanley-Marbell and M. Rinard. "Lax: Driver Interfaces for Approximate Sensor Device Access", USENIX HotOS'15, 2015

