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Processor
(0.309mW)

Bluetooth LE
(0.436mW)

20⨯20 OLED Pixels
(0.235mW)

Gyroscope
(18.300mW)

Pressure
(0.010mW)

Accelerometer
(0.312mW)

Magnetometer
(0.408mW)

Infrared/Color
(0.528mW)

Humidity
(0.540mW)

To improve system-wide energy-efficiency, focus on the dominant fraction

(Note: sectors scaled logarithmically due to large range of values)
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➊ Explore approximation in sensors / inputs
➋ Explore approximation in displays / outputs / communication

For sensor-driven system such as wearables and “internet-of-(every)things”

We make three arguments, in light of these observations

➌ What are bounds on benefit from reducing precision, accuracy, reliability/certainty?
Across all system types:

(If best-case achievable gains are small, why bother…)
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P. Stanley-Marbell and M. Rinard. “Lax: Driver Interfaces for Approximate Sensor Device Access”, USENIX HotOS’15, 2015  
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P. Stanley-Marbell and M. Rinard. “Value-Deviation-Bounded Serial Data Encoding for Energy-Efficient Approximate Communication”, MIT-CSAIL-TR-2015-022, 2015  

000000000000000 1111 00 11 00000000...

Time

Serial

More transitions : more dynamic power dissipation

communication interface/bus driver
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Count of cases is given by number of solutions to Diophantine equation pair:

An upper bound on number of cases is 2L+1 - 2m (shaded gray region in plots above)
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Fig. 4. When multi-bit upsets occur, ⌊log2(m) + 1⌋ no longer charac-
terizes the number of bit positions that must be protected to prevent
value deviations of m (left). In the case of erasures, the syndrome must
capture both the location and value to be corrected (right).

deviation of m = 1. The foregoing analysis would imply
that the upset must have occurred in the least significant
⌊log2(m)+1⌋ bits. Consider however the value 63, which,
as a result of a multi-bit bipolar inversion upset, is now
the value 64. This would require a 7-bit bipolar inversion
upset vector as shown in Figure 4 (left).

Furthermore, for erasures, the syndrome must not only
denote which bit position is incorrect, but must also
be able to determine the correct bit value, based on
information in the syndrome. For example, for L = 8 and
k = 1, there are sixteen possible single-erasures, e.g., bit
4 should have value 0 but has suffered an erasure, bit 4
should have value 1 but has suffered an erasure, and so
forth, plus the additional case of no incurred erasures.
The syndrome thus needs five bits, versus four in the
case of inversions; this is illustrated in Figure 4 (right).

The construction of appropriate bounds for unipolar
and bipolar multi-bit erasures is described next.

D. Efficiency bounds for multiple unipolar erasures

When erasures are unipolar, each placement of k
upsets into an L-bit word leads to a unique deviation,
m. Thus we can obtain a closed-form expression for
the exact number of instances of a given deviation, m,
occurring in the presence of k unipolar upsets:

zk∗m∗(L, k,m) =
k

∑

i=1

m
∑

j=2k
−1

z(L, i, j), (3)

and thus, as there are
∑k

i=1
2L ·

(

L
i

)

pairs of L-bit words
that differ in less than or equal to k bit positions,

LC ≥ L + ⌈log2(

k
∑

i=1

2L ·

(

L

i

)

− zk∗m∗(L, k, m) + 1)⌉. (4)

E. Efficiency bounds for multiple bipolar erasures

In the general case of bipolar multi-bit erasures, the
effect of erasures on bits of differing polarities interact.
The problem of finding the number of word pairs that
may exist for a given word length L, number of erasures
k, and value deviation m, can be re-stated as the problem
of finding the number of pairs of L-bit words that differ
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Fig. 5. Number of solutions to Equation 5, for L = 8, with varying
k and m. The plots are overlaid on the bound to the number of
solutions of Equation 5, given by Equation 6, shown as the shaded
grey inequality region.

in value by m, and have Hamming distance k. For
unsigned L-bit values, this is given by the number of
solutions to the simultaneous Diophantine equation pair:
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L−1
∑

i=0

wi2
i −

L−1
∑

i=0

vi2
i

∣

∣

∣

∣

∣

= m, (5a)

L−1
∑

i=0

(wi(1 − vi) + vi(1 − wi)) = k. (5b)

The intuition behind Equations 5a and 5b is that two L-
bit unsigned values differ in k bit positions, and differ
in value by m, when their arithmetic representations
differ in value by m, and their bit-wise XOR has k
bits set. For other number representations (e.g., two’s
complement, or floating-point approximate real-number
representations like the IEEE-754 floating point format),
the first of the above two equations will be replaced with
an equation capturing the (different) role bit-positions
play in the said number representation.

The general solution of Diophantine equations is un-
decidable, however, one may derive an upper bound on
the number of solutions satisfying the above equations.
For values between 2L − 1 − m and m, of which there
are a total of 2L − 2m, each value may be paired with
two other values from which it differs by amount m.
Since ordered pairs are of interest, each item (say, i) of
the 2L − 2m items belongs to two pairs (say, (i, i + m)
and (i, i − m)), for a total of 2(2L − 2m) ordered pairs.
Values from 0 to m − 1 inclusive have only m “forward
pairings” (say, (i, i+m)). Likewise values from 2L−m to
2L −1 inclusive only have m “backward pairings”. Thus
the total number of ordered pairs of L-bit numbers that
differ in value by m is 2(2L − 2m) + m + m, i.e.,

zk∗(L, k,m) ≤ 2L+1 − 2m, (6)

and thus, similar to Equation 4,

LC ≥ L + ⌈log2(

k
∑

i=1

2L ·

(

L

i

)

−

m
∑

j=1

(2L+1 − 2j) + 1)⌉. (7)

The right hand side of Equation 6 is incidentally the
number of solutions to Equation 5a alone. Exhaustive
enumeration of the solutions to the pair Equation 5,
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Number of bits we perturb 

Deviation from correctness

(w and v are two L-bit words)

P. Stanley-Marbell “Encoding Efficiency of Digital Number Representations under Deviation Constraints”, IEEE Information Theory Workshop, ITW’09, 2009
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➍ Understanding upper limits of benefits informs choice of realistic techniques
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