
Parallel Streaming Computation on
Error-Prone Processors

Yavuz Yetim, Margaret Martonosi, Sharad Malik

X

Hardware Errors on the Rise

Random Process Variation
[Khun et al., 2011]

Soft Errors Due to Cosmic Rays
[Sierawski et al., 2011]

0

5

10

15

20

25

65 55 45 40

U
p

se
ts

/B
 m

u
o

n
s/

M
b

Technology Node (nm)

1

10

100

1000

10000

100000

110100100010000A
ve

ra
ge

 N
u

m
b

e
r

o
f

D
o

p
an

t
A

to
m

s

Technology Node (nm)

X

Traditional Solutions

0

0.002

0.004

0.006

0.008

0.01

550 590 630 670 710 750 790 830

N
o

rm
 N

u
m

b
e

r
o

f
D

ie
s

Delay (ps)

PDF of Delay

Reliable

Higher Latencies or
Voltage Margins

Redundancy

High Power, Performance and Area Overhead

Processor 1 Processor 2

Output
Check

Input
Replication

Memory subsystem
with ECC

up to 100%

SECDED: 1-cycle latency, ~10k gates
4EC5ED: 14-cycle latency, ~100k gates

X

Reliable memory

Architectures for Error-Prone Computing

EnerJ
[Sampson et al., 2011]

ERSA
[Leem et al., 2010]

Reliable core & memory

main thread:
- algorithmic control
- worker thread error handling

Unreliable core & memory

worker thread:
- do-all unit
- restarted on error

.

.

.

.

Flikker
[Liu et al., 2011]

.

.

.

.

Unreliable memory

critical int x; int y;

Processor / Memory Unreliable execution unit /
register / memory

Reliable execution unit /
register / memory

Instruction / Data

tolerant

Reliable Unreliable*

X

To Minimal Reliable Hardware

Output:
• Crashes due to

memory errors
• Hangs due to

control-flow errors

Error-prone processorError-tolerant application

X

To Minimal Reliable Hardware

Output:
• Crashes due to

memory errors
• Hangs due to

control-flow errors

Error-prone processorError-tolerant application

StreamIt programming model
+ memory segmentation

Filter 1

Filter 2

Filter 3

Filter 4

Control-flow with scopes:
• Known run-times of modular

control-flow regions determine
timeout limits

• Coarse-grain sequencing of
computation

Regions with
R/W/X

permissions

Memory:
• Only allowed accesses are

allowed, other dropped

X

To Minimal Reliable Hardware

Output:
• Crashes due to

memory errors
• Hangs due to

control-flow errors

Error-prone processor

+ coarse-grain control-flow,
memory, I/O management

Error-tolerant application

Error-tolerant application Error-prone processor Output: Graceful quality
degradation with errors

*Extracting Useful Computation From Error-Prone Processors [Yetim et al, 2013]

X

Communication Errors For Parallel
Streaming Applications

Error-tolerant application Multiple processing
nodes with single-

threaded protection

Output:
Unacceptable quality

This work
• Communication errors

– Unrecoverable corruption of the communication mechanism
– Data misalignment among producer/consumer threads

• CommGuard
– Application-level communication information
– Low overhead recovery from communication errors

X

Outline

• Motivation

• Communication Errors in Parallel Streaming
Applications

• CommGuard System Overview

• Experimental Methodology and Results

• Conclusions

X

Communication Errors
Transmission Failure

Producer Consumer

Concurrent Software Queue
• List of free pointers
• List of data pointers
• Locks
• State shared by both ends
• State retained throughout

computation

Corruption in lists, pointers and locks are permanent

push pop

X

Communication Errors
Transmission Failure

Producer ConsumerError-free Hardware Queuepush pop

• Data items are flowing
• Image is not coherent

X

Communication Errors
Misalignment I

Producer():
push R;
push G;
push B;

Consumer():
pop R;
pop G;
pop B;

Error-free Hardware Queue

G RBRBR

Misalignment due to a control-flow error is permanent

X

R[0:63]

G[0:63]

B[0:63]

P[64:127]

R[64:127]

G[64:127]

B[64:127]

Communication Errors
Misalignment II

Producer R

Producer G Join

Producer B

P[0:63]
G[192:255]

R[128:191]

B[128:191]

Misalignment at join nodes are also permanent

X

Outline

• Motivation

• Communication Errors in Parallel Streaming
Applications

• CommGuard System Overview

• Experimental Methodology and Results

• Conclusions

X

CommGuard Overview

Producer Consumer

Iteration

iterationiteration

iteration
markers • Expecting item,

received marker: PAD
• Expecting marker,

received item: DISCARD

X

CommGuard Overview

split
join

For all incoming edges
• If items missing: PAD
• If items extra: DISCARD

Local
iteration
counter

Local
iteration
counter

X

CommGuard System Overview

Unreliable Producer

Frame Inserter

Unreliable Consumer

Frame Checker

Header

Pad, Discard, Pad & Discard

StallPush
New
iteration

Hardware
Queue

Item

Pop

Header

Item

New
iteration

X

Outline

• Motivation

• Communication Errors in Parallel Streaming
Applications

• CommGuard System Overview

• Experimental Methodology and Results

• Conclusions

X

Experimental Methodology

• Built on prior simulation Infrastructure by [Yetim et al, DATE 2013]
– Virtutech Simics modeling 32-bit Intel x86
– Error injection capabilities
– Protection modules for sequential streaming applications
– Architecturally visible errors following distribution with given mean time

between errors (MTBE)
• Pick error injection cycle
• Picks random register, pick random bit
• Flip bit, repeat

• Extensions for multi-core simulation
– Monitor scheduling of selected threads
– Pin threads to processor cores
– Per-core error injection
– Protection modules implemented for every core

• Modeled frame checker and frame inserter
• JPEG Decoder as a streaming application

X

Output at Different Error Rates

• Output quality restored after misalignment through
CommGuard

• Graceful output degradation with increasing errors

X

Run-time Overhead Due to Stalls

• Run-time increases due to stalls caused by misalignments

• Only 2% even at high error-rates

X

Amount of Padding

• Padding to resolve misalignments is observed even at low
error rates

X

Outline

• Motivation

• Communication Errors in Parallel Streaming
Applications

• CommGuard System Overview

• Experimental Methodology and Results

• Conclusions

X

Conclusions

• Communication in parallel applications add fragility
– Error-prone communication subsystem

– Data misalignments due to asynchronous threads

• Explicit communication & control-flow can be used
– Encapsulate coarse-grain data units

– Use small checker circuitry to recover from communication
errors

• Low overhead solutions to sustain quality
– Only ~150B of reliable state per core and less than 2% run-

time overhead even at high error rate

– 16dB can be sustained for errors as frequent as every 1ms

Parallel Streaming Computation on
Error-Prone Processors

Yavuz Yetim, Margaret Martonosi, Sharad Malik

X

Backup Slides

X

Suitably Error Tolerant

X

Frame Checker FSM

X

Avoid Running Indefinitely

Program Program

Regular execution Indefinite run due to errors

Program

Divide program to
regions with time limits

Scope 1

Scope 2

Loop 1

Loop 2

Loop 1

Loop 2

Too long Too long,
break

X

W

Disallowed Memory Accesses

Memory Memory

Regular execution Crash due to errors

Memory

Suppress crashes

R/X

R/W

R/X

R/W

R/X

R/W

Crash

X

W

X W

Don’t crash,
Bump PC

X

X

Overall Design

MIS: Coarse-grained control
flow constraints and recovery

MFU: Coarse-grained constrains
on memory accesses

Streamed I/O: Manages
bounded data streams

X

Communication Errors
Single-threaded

Producer Consumer

push 16 pop 64

Toy producer-consumer
streaming application

P P PCore 0 P C ...

Statically allocated
64-item buffer

• Static location is preserved in reliable I-Cache throughout the computation

• Every new [P] or [C] iteration recovers the pointer values

• Communication never halts indefinitely

X

Shared State

Value Details (S)tatic or
(D)ynamic

Firing per frame
How many times a node needs to fire

before the computation starts for the next
frame

S

Frame limit
Number of total frames the application
needs to process

S

Active frame
How many frames have been processed
so far

D

Active firing
How many times the node has fired for the
active frame

D

• The inserter and the checker need to keep state to operate

• State below is shared by every inserter and checker belonging
to a node

X

Additional Frame Checker State

State Details (E)rroneous (N)ormal

Receiving items
Node is receiving items for the active
frame

N

Expecting a header
Node has started new frame

computationally hence the next item in the
queue should be a header

N

Discarding
The computation in the node is ahead of
the communication of the edge

E

Padding
The communication of the edge is ahead of
the computation in the node

E

X

CommGuard Placement

Previous Filter Next

.

.

.

.

FC FI

.

. .

.

X

Output Quality For Varying MTBEs

• Compare lossy compression to error-prone decompression

• For raw image file I, encoded file E and decoded files F or P:

• This study was performed for MP3 and JPEG decoder benchmarks

– Widely used

– Full-runs

– Each experimental setting: 10 times

Raw Image Compressed Image

Decompressed
Image

Decompressed
ImageCompression

Error-free

Baseline: Error-free SNR

Ours: Error-prone SNR

Error-prone

