
Methodical	
 Approximate	

Hardware	
 Design	
 and	
 Reuse	

Amir	
 Yazdanbakhsh 	
 Bradley	
 Thwaites 	
 	

Jongse	
 Park 	
 	
 	
 	
 Hadi	
 Esmaeilzadeh	

	

	
 Georgia	
 InsBtute	
 of	
 Technology	

Outline	

Design	
 of	
 approximate	
 modules	

IntegraBon	
 and	
 reuse	
 of	
 approximate	
 modules	

Safety	
 analysis	

Output	
 quality	
 analysis	

QuesBons	

Design	
 Phase	

•  How	
 does	
 the	
 designer	
 specify	
 what	
 can	
 be	

approximate?	

– Marking	
 individual	
 gates	
 is	
 burdensome.	

– Mark	
 only	
 output	
 wires	
 as	
 approximate	
 signals.	

•  Maintain	
 SeparaBon	

•  ApproximaBon	
 Plan	
 and	
 Interfacing	

ApproximaBon	
 Plan	

a
b
c_in

(* A *) s

c_out

w0

w1

w2

w3

x0 x1

a
b
c_in

(* A *) s

c_out

w0

w1

w2

w3

x0 x1

(a) Full adder design

module fa(a, b, c_in, c_out, s);

input a, b, c_in;

output c_out;

(⇤A⇤) output s;

wire w0, w1, w2, w3;

xor x0(w0, a, b);

xor x1(s, w0, c_in);

and u2(w1, a, b);

and u2(w2, a, c_in);

and u2(w3, b, c_in);

or u4(c_out, w1, w2, w3);

endmodule

(b) Approximate full adder in Verilog

Figure 1: Approximation plan for a full adder. Shaded gates
can be approximated.

approximate semantics [10, 13, 14, 18, 22–24], our framework
enables a modular and methodical approach toward designing
and reusing approximate hardware “systems.”

2. Approximation Plan
In this section, we describe how a designer specifies an ap-
proximation plan for a hardware module. In our framework,
an approximation plan implicitly identifies which part of the
module can be approximated by the synthesis tool. For sim-
plicity, we first describe the approximation plan only within a
module, leaving the details of reuse and more complex designs
to Sections 4 and 6.

Figure 1a shows a full adder, in which s is the sum of the
three inputs, a, b, c_in, and c_out is the carry out. Suppose the
designer intends to allow the logic that produces the sum, s, to
be approximate while keeping the logic for c_out precise. One
option is to allow the designer to explicitly mark the XOR gates
in 1a as approximate units. However, we find this approach
to be burdensome. Instead, we only require the designer to
declare the wire s as an approximate signal. Then, the compiler
will perform a static analysis and automatically identify the
hardware elements that are candidates for approximation. In
Figure 1a, as the designer declares s as approximate, the static
analysis will identify that the two XOR gates that contribute to
s’s value are approximable. With this approach, the designer
does not need to declare any other wires including a, b, c_in,
and w nor any of the XOR gates as approximate. Thus, this
abstraction significantly reduces the burden of the designer
to analyze and understand complex data flows throughout the
circuit. She only intuitively declares a wire as approximate
and the static analysis automates the rest.

For backward compatibility, all the wires and units are
precise by default. Thus, an unmodified Verilog code will
produce the expected results. Therefore, in Figure 1a, the
unmarked c_out signal and ANDs, wires, and ORs generating
c_out will be precise.

To support this approximate design methodology, we intro-
duce one new language construct to Verilog to allow approxi-

a
b
c_in

(*A *) s

c_out

w2

w1

x0
x1

w0

(a) Full adder design

module fa(a, b, c_in, c_out, s);

input a, b, c_in;

output c_out;

(⇤A⇤) output s;

wire w0, w1, w2, w3;

xor x0(w0, a, b);

xor x1(s, w0, c_in);

and u2(w1, c_in, w0);

and u2(w2, a, b);

or u2(c_out, w2, w1);

endmodule

(b) Approximate full adder in Verilog

Figure 2: Approximation plan for a full adder. Only the one
shaded gate can be approximated.

mate declarations. This construct, (*A*)2, is an attribute that
can be attached to any wire3 in the design. Figure 1b shows
the Verilog implementation of the full adder. Notice that in our
framework, there is no notion of approximate inputs. Within a
module, the designer does not have control over the precision
of the inputs, only how the logic inside the module operates
on those inputs.

In many cases, the logic which produces an approximate
signal may also contribute to a precise signal at some interme-
diary stage. During static analysis, we maintain the property
that any precise signal will not be influenced by approximate
logic, providing a guarantee of safety in our approximate de-
sign paradigm. Figure 2a shows an optimized full adder in
which, again, s is an approximate signal while c_out is precise.
Since x1 only influences an approximate wire, it is a candi-
date for approximation. However, x0 generates a signal which
propagates to both approximate and precise wires. In this
situation, the safety property must be maintained, so x0 must
be implemented precisely. Our static analysis will provide this
guarantee (Section 3). In Sections 4 and 6, we will provide
the abstractions to control quality.

3. Approximate Interface
The ability to reuse components in a modular way is critical
to modern industrial hardware systems design. Before we
discuss the reuse of approximate modules in a full system,
we describe the interface abstractions through which each ap-
proximate module communicates with the rest of the system.
These abstractions define the external view of the module.
The interface of a module consists of its inputs and outputs.
Each module must declare which outputs produce approxi-
mate results. The default assumption is that if an output is not
declared approximate, then it always produces precise results
under all circumstances. Therefore, any outputs that have any
chance of being influenced by approximation within the mod-
ule must be declared approximate. We use the same (*A*)
2Verilog 2011 allows specifying attributes for wire, module, ... through the
(*ATTRIBUTE*) construct.

3In Verilog, the wire, reg, and output keywords can be used to declare a
physical wire. Our attribute can be attached to all these keywords.

2

Module	
 Interfacing	

(*A*) data_out

approx_out

(*C*) addr

data_in

(*C*) approx_in

(*C*) wrt_en

(*C*) clk

DualState
Memory

(*A*) data_out

approx_out

(*C*) addr

data_in

(*C*) approx_in

(*C*) wrt_en

(*C*) clk

DualState
Memory

(a) Approximation interface of a dual-state mem-
ory

module DualStateMemory(

clk, wrt_en,

address,

data_in, approx_in,

data_out, approx_out);

(⇤C⇤) input clk;

(⇤C⇤) input wrt_en;

(⇤C⇤) input[N-1:0] address;

input[M-1:0] data_in;

(⇤C⇤) input approx_in;

(⇤A⇤) output[N-1:0] data_out;

output approx_out;

...

endmodule

(b) Approximation interface for a dual-state
memory unit in Verilog

Figure 3: Approximation interface for a memory. The shaded
gate can be approximated.

notation to declare outputs as approximate. At design time,
the designer of a module will have no knowledge of whether
approximation techniques have been applied to the inputs.
However, the designer may want to impose more stringent
requirements on certain inputs. Example may include clocks
and write-enables which are critical to the functionality of the
approximate module when instantiated and reused in a larger
hardware system. Therefore, we introduce a new construct,
(*C*), which declares an input critical. Semantically, any wire
which is influenced by approximation cannot be connected to
a critical input. These rules define the approximate interfaces
of the module. Figure 3 shows an interface for a simple mem-
ory module capable of reading and storing both precise and
approximate data. This module either writes to or reads from
addr at the rising edge of each clock, depending on the value
of wrt_en. Suppose if the value of approx_in is true, then data
can be written to an approximate memory cell, otherwise it
must be stored in a precise manner. While data_in can carry ei-
ther precise or approximate data, it could be devastating to the
functionality of the module if any of the other inputs have been
computed approximately. For example, an error in approx_in
could cause important precise data to be written to approxi-
mate storage, introducing unacceptable behavior. Thus, the
critical inputs are marked (*C*) and the module designer is as-
sured that these signals will never be affected by approximate
operations. An analogous situation is present in the outputs of
the module in Figure 3. The signal approx_out is not marked
as approximate, indicating that no approximate operations
were applied to this output at any point within the scope of

Full Adder

a[0]b[0]

c_in

z[0]

c[0]
Full Adder

a[1]b[1]

z[1]

c[1]
Full Adder

a[2]b[2]

(*C*) z[2]

c[2]
Full Adder

a[7]b[7]

(*C*) z[7]

c_out

Precise Modules Approximate Modules

(a) Overriding approximation in an adder

module adder(a, b, c_in, c_out, z);

input[7: 0] a, b;

input c_in;

(⇤A⇤) output[7: 0] z;

output c_out;

(⇤C⇤) wire[7: 2] z;

wire[6:0] c;

fa u0(a[0], b[0], c_in, c[0], z[0]);

fa u1(a[1], b[1], c[0], c[1], z[1]);

fa u2(a[2], b[2], c[1], c[2], z[2]);

fa u3(a[3], b[3], c[2], c[3], z[3]);

fa u4(a[4], b[4], c[3], c[4], z[4]);

fa u5(a[5], b[5], c[4], c[5], z[5]);

fa u6(a[6], b[6], c[5], c[6], z[6]);

fa u7(a[7], b[7], c[6], c_out, z[7]);

endmodule

(b) Overriding approximation in Verilog for an adder

Figure 4: Approximation interface for a memory. The shaded
gate is approximate.

the module. Similarly, even though data_out still sometimes
holds precise values, it must be marked (*A*) because there
is a possibility of approximation during its computation.

4. Overriding Approximation and Bridging
Here we focus on the controlled reuse of approximate modules.

Overriding approximation. While the approximation plan
defines where approximation is allowed within the module,
the system designer must be able to control approximation
when instantiating the module in a system. For example, as
Figure 4a illustrates, a designer may want to preserve precise
semantics for the most significant bits of an adder while allow-
ing approximation in the least significant bits. In this case, the
designer needs to override the original full adder approxima-
tion plan when instantiating the full adders producing the most
significant bits. The mechanism we provide for overriding
is to connect a critical wire to the approximate output of the
module to be overridden. As Figure 4b shows, we extend
the Verilog language to allow redeclaring part of the output
vector z as critical using (*C*). Since full adders u7 to u2
are connected to a critical wire, the compiler will not mark
them as approximable. In fact, any logic contributing to a
critical wire will not be approximated, except in exceptional
cases which we describe shortly. Notice that in terms of in-
terfacing the z output is still an approximate output from an
outside point of view. Figure 5 describes a more complicated

3

Reuse	
 Phase	

•  Avoid	
 rewriBng	
 modules	
 from	
 scratch	

– Ease	
 of	
 development	

•  Reuse	
 of	
 IP	
 cores	

– MoBvaBon	
 for	
 innovaBon	
 and	
 entrepreneurship	

•  Scalability	
 for	
 very	
 large	
 designs	

Overriding	

Full Adder

a[0]b[0]

c_in

z[0]

c[0]
Full Adder

a[1]b[1]

z[1]

c[1]
Full Adder

a[2]b[2]

(*C*) z[2]

c[2]
Full Adder

a[7]b[7]

(*C*) z[7]

c_out

Precise Modules Approximate Modules

Overriding	
 within	
 a	
 Module	

b1 b2 b3

* * * *

+ + +

x

(*C*) clk

b0

(*A*) w1 (*A*) w3
(*A*) y(*C*) y

(*A*) w0

(*A*) w2

w4 w5

d0 d1 d2 d3

*
m0 m1 m2 m3

a1 a2 a3

(*C*) rst

Bridging	

(*C*) clk

DualState
Memory

(*C*) wrt_en

(*A*) data_out

approx_out
data_in

(*C*) approx_in

addr

ApproximaBon	
 Safety	
 Analysis	

•  ApproximaBon	
 bridge	

vs.	
 criBcal	
 wire?	

•  Deciding	
 final	
 precision	

of	
 all	
 gates.	

•  Backward	
 Slicing	

Algorithm	

	

	

plan, would allow the synthesis process to perform approx-
imate optimizations on the system while guaranteeing with
complete certainty that the constraints will be satisfied. Such
knowledge is not attainable in practice due to the unpredictable
nature of input data sets. Therefore, we allow the designer to
provide representative inputs for profiling, along with a global
confidence metric which should be satisfied by the synthesis
tool. These representative inputs enable the synthesis tool to
provide statistical quality guarantees. As the representative
input data become more comprehensive, the synthesis tool
can apply approximate optimizations more aggressively with
a higher degree of confidence. These high-level abstractions
for expressing quality requirements provide the following ben-
efits. (1) Hardware designers do not explicitly decide where
or how to apply approximate synthesis optimizations. (2) The-
ses modules provide better reusability since the same module
implementation can be reused across many system that may
require different level of precision. The synthesis and lay-
out tools have jurisdiction over how different approximation
techniques are applied while requiring only a single imple-
mentation from the designer. Quality constraints can be easily
adjusted or introduced to meet the accuracy needs of various
systems, providing a powerful reuse mechanism for hardware
modules, which is particularly compelling for IP designers.

Algorithm 1 Backward slicing to find precise wires.
Inputs: K: Circuit

Q: Set of precise outputs
Y: Set of critical wire overrides
Y: Set of approximate wires overrides

Output: ¬: Set of precise wires

Initialize ¬ /0
Initialize Q /0
for each wi 2 (Q [Y) do

enqueue(Q, wi)
end for
while (Q 6= /0) do

wi dequeue(Q)
F In K, find input wires of the gate that drives wi
for each w j 2 F do

if (w j /2 Y and w j /2 ¬) then
¬ ¬ [w j
enqueue(Q, w j)

end if
end for

end while

7. Approximate Synthesis Process
In our framework, we envision a synthesis tool that first takes
in the annotated Verilog source code and produces a gate-
level netlist without employing any approximate optimizations.
However, the synthesis tool preserves the approximate annota-

tions. Then, our safety analysis—part of which is presented
in Algorithm 1—will identify the safe-to-approximate subset
of the gates with regards to the designer annotations. The
safety criteria is that this subset of gates does not contribute
in any ways to precise outputs. It is in the next step that the
synthesis tool incorporates the error bounds and the quality
requirements. Considering the error constraints, the synthesis
tool may choose a subset of the safe-to-approximate gates to
be approximated, but it is illegal to apply such optimizations
to the precise gates. The synthesis tool has the liberty to apply
gate substitution, gate elimination, logic restructuring, voltage
over-scaling, or any other optimizations as it deems prudent.
The computational problem of selecting a subset of the safe-
to-approximate gates and the corresponding approximation
technique can be formulated as a constrained optimization
problem. The objective is to minimize a combination of error,
delay, and energy. In future work, we will provide a gener-
alized framework for this constrained optimization problem.
Nevertheless, our design abstractions enable the designer to
guide the synthesis process with high-level annotation while
delegating the implementation and application of approxima-
tion to an automated procedure.

8. Related Work
A growing body of research shows the applicability and signif-
icant benefits of approximation [5, 6, 8, 9, 19]. However, prior
research has not explored extending hardware description lan-
guages for systematic, and reusable approximate hardware
design. Our work is at the intersection of approximate lan-
guage design and approximate hardware synthesis techniques.

Approximate programming languages. EnerJ [21] pro-
vides a set of type qualifier to enable programmers to ex-
plicitly declare all the approximate variables in the program.
As Figure 7, if we had extended EnerJ’s model to Verilog,
the designer would have been required to manually declared
all the wires that are approximate. With our abstractions as
Figure 8 illustrates, the designer usually marks the approxi-
mate outputs and the safety analysis automatically identifies
which wires and modules are safe-to-approximate. Further-
more, EnerJ does not provide any semantic for specifying
accuracy requirements or acceptable error bounds. Rely [2]
requires the programmer to explicitly and manually mark both
variables and operations as approximate. However, it provides
semantics for verifying whether these annotations will satisfy
programer specified accuracy requirements. Or work aims to
automate the process of selecting where to apply approxima-
tion and yet provide statistical guarantees.

Approximate circuit design and synthesis. In [10, 14, 22,
25] alternative and less accurate implementation specific hard-
ware blocks such as adders and multipliers are proposed.
Miao et al. [18] provides many Pareto-optimal designs al-
ternatives for adder and allows the designer to choose a variant
based on her energy, performance, and accuracy requirement.

6

Cone	
 Analysis	

(*A*) y
(*C*) y

(*A*) w0

(*A*) w1(*C*) w2

(*A*) y

z

Quality	
 Analysis	

•  Constraining	
 approximaBon	

•  Safety	
 vs.	
 Quality	

•  (*A:	
 f()	
 <	
 ε*)	

•  Profiling	
 with	
 test	
 inputs	

•  Global	
 confidence	
 metric	

QuesBons?	

