IACT: A Software-Hardware
Framework for Understanding the
Scope of Approximate Computing

Rajkishore Barik Somnath Paul

Intel Labs

WACAS 2014 Mar 2, 2014



Motivation

* Bottom-Up
— Devices are becoming less reliable
* We operate devices at limits of reliability

— Error detection/correction is expensive

* Opportunity for significant energy improvement



Motivation

Bottom-Up

— Devices are becoming less reliable
* We operate devices at limits of reliability

— Error detection/correction is expensive

* Opportunity for significant energy improvement
Top-Down

— Important applications can be approximate
* Computer Vision
* Graphics (raster and ray tracing)
e Speech
* Signal processing
* Machine learning
* Any lossy codec (video encode / decode)



State of Current Research

* Lots of recent proposals advocating the
potential of in this area

* But..

— Ad hoc techniques

e.g. code perforation with sparse data didn’t work
— Small number of applications
— Simulation environment



State of Current Research

* Lots of recent proposals advocating the
potential of in this area

* But..

— Ad hoc techniques

e.g. code perforation with sparse data didn’t work
— Small number of applications
— Simulation environment

* How does one do a 15t order analysis to study
the scope of approximations in an application



Sample applications

A compiler and
runtime framework

A simulated hardware
testbed



IACT

Language pragmas

#pragma axc

#pragma axc_precision_reduce
#pragma axc memoize [(arg, err), ...]
{out_vars}

Programmer provided per-function checker
functions




IACT

Static AxC transformation such as precision
reduction and bitwidth reduction

A runtime framework for approximate
memoization




IACT

AxC C/C++

CLANG

LLVM Precision reduction
Hardware memoization (WIP)
Noisy computation

Object: IA binary Noisy memory modules
Noisy network channels

Linker

Executable

Pintools (simulation and analysis)



IACT — Sample Workloads

* Bodytracking (from PARSEC)
* Sobel filter
e Classification algorithm

10



Bodytracking Application

i -

| ot

B S5l

4 3
,‘ 4 ,
.

= 1 /
- - -
: 9
\ /

p LN ;\ A

N és e

>
Tracking result 1 Tracking result 2

11



Bodytracking Application

Tracking result 4

12



Sobel Filter

For “similar” window of pixels, read out the value from the memoization table
- If “miss” in table, then do the “expensive” computation and populate the
table
- If “hit” in table then read out the result value

Input Output

Hit
Input
- Output

. Miss Expensive
Kernel

13



Sobel Filter

For “similar” window of pixels, read out the value from the memoization table
- If “miss” in table, then do the “expensive” computation and populate the
table
- If “hit” in table then read out the result value
- Results show with “small”
in a small size table

output quality degradation, we could have 60% hit

Precise output 54b/entry 36b/entry 27b/entry

14



(Semi)Auto-generated Checker
Functions - WIP

* The checker functions could be
— programmer specified
— auto generated by the runtime layer

A ML framework learns the relationship
between approximation knobs and acceptable
outputs

15



Also in the paper..

e Taxonomy of approximate computing

 Why an application could be amenable to
approximate computing

16



Conclusions

* {ACT toolkit
— Language level constructs
— Runtime framework
— Approximate hardware simulation
— Sample applications

17



IACT Toolkit

https://github.com/IntelLabs/iACT

WACAS 2014 Mar 2, 2014



Backup

19



IACT - Hardware Simulation

. AxC cores
Precise core

PIN based tool

Simulates a many core processor, few cores
are “precise cores” and most other cores
are “AxC cores”

20



IACT - Hardware Simulation

. AxC cores ..
Precise core Application

Functions annotated as “AxC tolerant” are
executed on the AxC cores, rest of the code
is executed on the “precise core”

pA



IACT - Hardware Simulation

. AxC cores ..
Precise core Application

AxC cores would have knobs for - \
— Approximate ld/st to register files v

§~\
.
.
N

— Caches operating at low voltage,

storing imprecise values
— Imprecise but energy efficient K /

functional units (for add, sub, mul, div,
etc)

— Lossy interconnect

— Etc, etc (energy efficient knobs to
enable AxC)

22



