
Beayna Grigorian, Glenn Reinman

UCLA Computer Science Department

{bgrigori, reinman}@cs.ucla.edu

Improving Coverage and Reliability in Approximate

Computing Using Application-Specific, Light-Weight Checks

WACAS March 2, 2014

Introduction

Existing Approaches: Application quality is often coupled with the

accuracy of the unit of approximation (i.e. approximate accelerator)

+ Efficient quality analysis using offline, static techniques

 Potential compromise of coverage and reliability

Our Approach: Leverage high-level, application-specific metrics,

or Light-Weight Checks, for dynamic error analysis and recovery

Cases that potentially result in

unacceptably inaccurate solutions

are exempted from approximation

Cannot provide absolute

guarantees for satisfying

QoS constraints

Light-Weight Check (LWC)

Characteristics

 Light-weight to evaluate (relative to application)

 Usage at runtime: Test approximated output and initiate recovery if needed

 Application-specific, yet algorithm-independent

 E.g. Scene analysis for physics-based simulation

Benefits

 Reliable, dynamic guarantees on user-specified QoS

 Better coverage for potentially good approximations

 Platform-agnostic with negligible overhead

Key Insight: While finding a solution may be complex,

checking the quality of that solution could be simple

Application Examples

Application Sample Algorithm Application Domains LWC

Inverse

Kinematics

Cycle Coordinate

Descent

Robotics, Gaming,

Graphics

Forward

Kinematics

State

Estimation

Kalman Filter Navigation, Finance,

Signal Processing

Measurement

Comparison

Physics-Based

Simulation

Gilbert-Johnson-

Keerthi Distance

Algorithm

Fluid Dynamics,

Control Systems,

Gaming

Energy

Conservation

Image

Denoising

Total Variation

Minimization

Computer Vision,

Medical Imaging

Universal Image

Quality Index

(UIQI)

How do I use an LWC?

• LWC is integrated directly

into the application

• Code is modified to execute

the following:

(1) Call approximate accelerator

(2) Evaluate LWC; determine QoS

(3) If QoS constraint is not met:

  Initiate recovery

  Reprocess current input

with exact computation

(4) Continue to next input

Implementing LWCs

How do I find an LWC?

• LWCs are user-defined

• LWCs could be based on:

– Internal values (i.e. inputs,

approximated outputs, and

intermediate values)

– External values (e.g. mobile

robot application with

supplemental sensory feedback)

• Certain application categories

may have easy-to-identify

and/or reusable LWCs

– Iterative refinement applications

– Image processing applications

How do I use an LWC?

• LWC is integrated directly

into the application

• Code is modified to execute

the following:

(1) Call approximate accelerator

(2) Evaluate LWC; determine QoS

(3) If QoS constraint is not met:

  Initiate recovery

  Reprocess current input

with exact computation

(4) Continue to next input

Implementing LWCs

How do I find an LWC?

• LWCs are user-defined

• LWCs could be based on:

– Internal values (i.e. inputs,

approximated outputs, and

intermediate values)

– External values (e.g. mobile

robot application with

supplemental sensory feedback)

• Certain application categories

may have easy-to-identify

and/or reusable LWCs

– Iterative refinement applications

– Image processing applications

Compiler support?

Experimental Setup

 Benchmark: Inverse Kinematics (3-joint arm)

 Error: Distance from end effector to target location

 Error Tolerance Threshold: maximum percentage of error

the user is willing to accept for any application output

 Approximation: Software-based Neural Network (8x8)

 Schemes

A. ORIG_1% – orig. benchmark (1% set threshold)

B. ORIG_n% – orig. benchmark (adjustable threshold)

C. ACC+LWC – benchmark integrated w/ NN & LWC

D. ACC-LWC – benchmark integrated w/ NN & no LWC

Results: Performance

Results: Reliability

• ACC-LWC: No LWC  No dynamic reliability!

• Significant portions of data are subject to failed QoS

Results: Coverage for Out-of-Range Inputs

Results: Coverage w/ Less Accurate Approx.

• Main Idea: Leverage application-level

tolerance of imprecision to improve

coverage and reliability

• Approach: Perform online error analysis

and recovery based on LWCs

• Platform-agnostic in nature, LWCs allow for

an elegant solution to dynamic error control

Conclusion

Thank you!

Questions?

