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In this position paper, we present an argument in the 

favor of employing stochastic computation for approximate 

calculation of kernels commonly used in machine learning 

algorithms. The low cost and complexity of hardware 

implementation of stochastic computational blocks, coupled 

with the inherent error resilience of a wide range of 

machine learning algorithms, offers new and interesting 

avenues for realizing hardware solutions that can exploit 

the energy-performance-accuracy tradeoff for data 

analytics workloads. 

 

The foundations of stochastic computation (SC) can be 

traced to the work by Poppelbaum [1] and Gaines [2] in the 

late 1960’s. Within the stochastic computation framework, a 

signal value x is represented as a Bernoulli bit-sequence 

X=(X1, X2, ..., Xm) such that P(Xi = 1) = x. For instance, x = 

5/8 can be represented by a sequence of bits: 

(0,1,0,1,1,1,0,1). This representation of numbers as 

probabilities allows for implementation of arithmetic 

operations such as addition and multiplication using simple 

digital logic gates [3]. A logical AND of 2 bit-streams 

produces a bit-stream that corresponds to the product of the 

numbers represented by the input bit-streams. Compared 

with analog [eg. 4] or mixed analog-digital [eg. 5] circuits 

for approximate computation, SC has the advantage of 

seamless compatibility with the state-of-the-art digital 

CMOS platform. Furthermore, the accuracy of a stochastic 

calculation can be tuned by varying the length of the bit-

stream used in the stochastic representation; the 

computation accuracy increases progressively with the 

increase in the bit-stream length. Interestingly, this control 

over the accuracy can be achieved without modifying the 

underlying hardware. As opposed to the positional number 

system traditionally used in binary number representation, 

each bit in the stochastic bit-stream is assigned the same 

weight. As a result, the stochastic representation is expected 

to be considerably more tolerant to errors arising out of 

random bit flips. 

Despite its unique advantages, several practical 

considerations limit the usefulness of SC and the idea of 

computation using stochastic bit-streams has failed to garner 

wide-spread research attention. So far, SC has been limited 

to niche applications such as low-density parity check 

(LDPC) decoding [6]. Motivated by its superior fault 

tolerance and the considerably small hardware footprint, 

some research effort has also been invested in extending SC 

techniques to image processing applications [7, 8]. 

 Historically, the primary drawback of the SC method 

has been the large overhead in terms of the number of clock 

cycles required to generate the stochastic bit-streams. A 

stochastic bit-stream of length m can represent numbers 

with a precision of 1/m. A given stochastic representation of 

a number is not unique and fluctuations in the bit-stream 

representation contribute to the inaccuracy in SC. The error 

introduced as a result follows a normal distribution with 

 

 
Fig. 1. (a) A stochastic computation system. (b) Summary of the key 

advantages (left) and challenges (right) of stochastic computation 

 
Fig. 2.Error (%) in estimation of (a x b) where a = 0.5, b = 0.5 using 

SC as a function of the bit stream length. Error statistics are obtained 

from 1000 trials. 
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zero mean and a variance that is inversely proportional to 

the bit-stream length used to represent the number as shown 

in Fig. 2. As a result, a serial implementation of the 

stochastic computation, although extremely area-efficient, 

suffers from high latency due to the long bit-streams 

required to achieve reasonable accuracy. This drawback has 

motivated a recent effort [9] aimed towards developing a 

parallel stochastic computing architecture that improves the 

computation speed and accuracy at the cost of increasing the 

area footprint of the overall system.  

It is worth noting that the dimension of the input data 

also plays an important role in determining the accuracy of 

the SC result. For instance, the stochastic computation of 

the inner product of two d-dimensional vectors requires 

generating N-bit long sequences for each dimension of the 

two input vectors. The inner product can then be computed 

by counting the occurrence of ‘1’ in the d x N output bits 

and normalizing the result by N. In such a case, the variance 

of the percentage error in the inner product calculation using 

SC is inversely proportional to the quantity d x N. The chart 

in Fig. 3 quantifies this observation. For computations on 

datasets with high dimensionality, it is then possible to 

significantly reduce the length N of the stochastic bit-stream 

while maintaining the same degree of accuracy. 

Applications that can tolerate a certain degree of 

inexactness in the underlying computation are very well-

suited for SC. As analyzed in the recent work [10], a wide 

range of machine learning algorithms designed specifically 

for pattern recognition, data mining and search are suitable 

for approximate computing. In most of these algorithms, a 

single computational kernel can be identified that is 

responsible for a large fraction of the algorithm run time. 

Typically, these algorithms are required to work with very 

high dimensional datasets. As an example, consider the 

MNIST handwriting recognition database [11] commonly 

used for benchmarking the performance of classification 

algorithms. Each data point in this database is a feature 

vector in a 784-dimensional space. The inner product of two 

such data points forms the dominant computational kernel in 

the linear support vector machine classification algorithm 

and may be computed approximately using SC. 

The burgeoning research interest in the area of 

approximate computing provides the motivation for 

revisiting stochastic computation. This unconventional 

technique of information processing offers a new and 

unique set of tools for trading off computation accuracy for 

gain in performance and/or power consumption and 

warrants a more careful consideration. In a stochastic 

computing system, stochastic bit-stream generation 

represents a sizeable overhead and limits the degree of 

parallelism that may be achieved.  Device-level and/or 

circuit-level innovations that reduce this overhead can 

improve the overall performance of a stochastic system. 

Furthermore, architecture-level research is needed to 

determine the optimal place in the system for generating 

stochastic bit-streams (near memory, near caches or near the 

core), hardware interfaces that feed data into the bit-stream 

generator, as well as all the components that might be 

needed to build a full "Stochastic ALU". 
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Fig.3. Error (%) in estimation of ATB where A, B are d-dimensional 

vectors with each component = 0.5. Error statistics are obtained from 

1000 trials. 


