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INTRODUCTION 

 Goal: Enable rigorous exploration of 

approximate computing trade-offs 

 Approach: Develop formal and automated 

techniques for reasoning about approximations 

 

 Current techniques often lack in 

 rigor (e.g., dynamic analysis), 

 precision (e.g., type systems), or 

 automation (e.g., interactive theorem provers) 



PROPOSED APPROACH 

 Apply automated differential program 

verification for reasoning about approximations 

 Compare original and approximate program 

 Encode relaxed specifications as differential 

assertions 

 Achieve precision and automation using SMT-

based checking and invariant inference 

 

 Ongoing work – under submission 



EXAMPLE 

 Taken from 
Carbin, Kim, Misailovic, Rinard, “Proving 

Acceptability Properties of Relaxed Nondeterministic 

Approximate Programs”, PLDI 2012 

 Inspired by an open-source search engine 

 

procedure swish(maxR:int,N:int) returns (numR:int) 
{ 
  numR := 0; 
  while (numR < maxR && numR < N) 
    numR := numR + 1; 
  return; 

} 

 



EXAMPLE: APPROXIMATION 

procedure swish(maxR:int,N:int) returns (numR:int) { 
  old_maxR := maxR; 
  havoc maxR; 
  assume RelaxedEq(old_maxR, maxR); 
  numR := 0; 
  while (numR < maxR && numR < N) 
    numR := numR + 1; 
  return; 

} 
 

function RelaxedEq(x:int,y:int) returns (bool) { 

  (x <= 10 && x == y) || (x > 10 && y >= 10) 

} 



EXAMPLE: VERIFICATION 

 Relaxed specification (acceptability property) 

 Relates original and approximate versions of swish 

(prefixed with v1. and v2. respectively) 
   

  v1.maxR=v2.maxR && v1.N=v2.N  
                        RelaxedEq(v1.numR,v2.numR) 

 

 Verification effort 

 Carbin et al. 

 Coq proof comprised of 330 lines of proof script 

 Zvonimir et al. 

 Manually provided 4 simple predicates 



DIFFERENTIAL VERIFICATION 

 Mutual summary relates pre- and post-states of 

two procedure versions 

old(v1.g = v2.g)  v1.g < v2.g 

 Mutual summaries are checked modularly by 

constructing a product program 

 Implemented in SymDiff [Lahiri et al. CAV’12] 

 Handles procedure calls [Lahiri et al. FSE’13]  

 Use off-the-shelf program verifier and inference 

 Allows for automatic inference of specifications 

 Leverages Houdini inference technique 

 Based on simple candidate templates 



IMPLEMENTATION 

 SymDiff differential program verifier 

 Implements product program generation 

 Boogie performs verification condition generation 

 Z3 solves generated verification conditions 

 

 Extended automated inference of invariants 

 Users can specify additional predicates 

 Arbitrary Boolean combination over predicates 

 Previously just conjunction 
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EVALUATION 

 Acceptability of approximate programs 

 Taken from Carbin et al. 

 Swish++, LU Decomposition, Water 

 

 Control flow equivalence 

 ReplaceChar, Selection Sort, Bubble Sort, Array 

Operations 

 Introduced encoding that tracks a sequence of 

visited basic blocks using uninterpreted functions 

 Precisely capturing array fragments 



EXPERIMENTS 

Benchmark #Predicates #Manual Preds. Time(s) 

Swish++ 14 4 6 

LU Decomposition 32 4 7 

Water 27 0 7 

ReplaceChar 10 1 7 

Selection Sort 66 4 307 

Bubble Sort 38 4 49 

Array Operations 41 1 7 



FUTURE WORK 

 Automate predicate generation further 

 Interpolants 

 Indexed predicate abstraction 

 Improve scalability 

 Prove relative termination 

 Reason about probabilities 

 Synthesis 

 Connect our tool flow with an approximate 

compiler 



CONTRIBUTIONS 

1. Applied automated differential program 

verification (SymDiff) for reasoning about 

approximations 

2. Showed that mutual summaries naturally 

express many relaxed specifications for 

approximations 

3. Improved precision and automation using SMT-

based checking and invariant inference 

4. Proved feasibility of applying automated 

verification to the domain of approximate 

computing 


