
Shuvendu Lahiri, Microsoft Research

Zvonimir Rakamarić, University of Utah

TOWARDS AUTOMATED DIFFERENTIAL

PROGRAM VERIFICATION FOR

APPROXIMATE COMPUTING

Collaborators: Ganesh Gopalakrishnan,

Arvind Haran, Shaobo He

INTRODUCTION

 Goal: Enable rigorous exploration of

approximate computing trade-offs

 Approach: Develop formal and automated

techniques for reasoning about approximations

 Current techniques often lack in

 rigor (e.g., dynamic analysis),

 precision (e.g., type systems), or

 automation (e.g., interactive theorem provers)

PROPOSED APPROACH

 Apply automated differential program

verification for reasoning about approximations

 Compare original and approximate program

 Encode relaxed specifications as differential

assertions

 Achieve precision and automation using SMT-

based checking and invariant inference

 Ongoing work – under submission

EXAMPLE

 Taken from
Carbin, Kim, Misailovic, Rinard, “Proving

Acceptability Properties of Relaxed Nondeterministic

Approximate Programs”, PLDI 2012

 Inspired by an open-source search engine

procedure swish(maxR:int,N:int) returns (numR:int)
{
 numR := 0;
 while (numR < maxR && numR < N)
 numR := numR + 1;
 return;

}

EXAMPLE: APPROXIMATION

procedure swish(maxR:int,N:int) returns (numR:int) {
 old_maxR := maxR;
 havoc maxR;
 assume RelaxedEq(old_maxR, maxR);
 numR := 0;
 while (numR < maxR && numR < N)
 numR := numR + 1;
 return;

}

function RelaxedEq(x:int,y:int) returns (bool) {

 (x <= 10 && x == y) || (x > 10 && y >= 10)

}

EXAMPLE: VERIFICATION

 Relaxed specification (acceptability property)

 Relates original and approximate versions of swish

(prefixed with v1. and v2. respectively)

 v1.maxR=v2.maxR && v1.N=v2.N 
 RelaxedEq(v1.numR,v2.numR)

 Verification effort

 Carbin et al.

 Coq proof comprised of 330 lines of proof script

 Zvonimir et al.

 Manually provided 4 simple predicates

DIFFERENTIAL VERIFICATION

 Mutual summary relates pre- and post-states of

two procedure versions

old(v1.g = v2.g)  v1.g < v2.g

 Mutual summaries are checked modularly by

constructing a product program

 Implemented in SymDiff [Lahiri et al. CAV’12]

 Handles procedure calls [Lahiri et al. FSE’13]

 Use off-the-shelf program verifier and inference

 Allows for automatic inference of specifications

 Leverages Houdini inference technique

 Based on simple candidate templates

IMPLEMENTATION

 SymDiff differential program verifier

 Implements product program generation

 Boogie performs verification condition generation

 Z3 solves generated verification conditions

 Extended automated inference of invariants

 Users can specify additional predicates

 Arbitrary Boolean combination over predicates

 Previously just conjunction

TOOL FLOW

SymDiff

Original

Program

Approximate

Program

Product

Program
Boogie +

Inference

Z3
Manual

Predicates

EVALUATION

 Acceptability of approximate programs

 Taken from Carbin et al.

 Swish++, LU Decomposition, Water

 Control flow equivalence

 ReplaceChar, Selection Sort, Bubble Sort, Array

Operations

 Introduced encoding that tracks a sequence of

visited basic blocks using uninterpreted functions

 Precisely capturing array fragments

EXPERIMENTS

Benchmark #Predicates #Manual Preds. Time(s)

Swish++ 14 4 6

LU Decomposition 32 4 7

Water 27 0 7

ReplaceChar 10 1 7

Selection Sort 66 4 307

Bubble Sort 38 4 49

Array Operations 41 1 7

FUTURE WORK

 Automate predicate generation further

 Interpolants

 Indexed predicate abstraction

 Improve scalability

 Prove relative termination

 Reason about probabilities

 Synthesis

 Connect our tool flow with an approximate

compiler

CONTRIBUTIONS

1. Applied automated differential program

verification (SymDiff) for reasoning about

approximations

2. Showed that mutual summaries naturally

express many relaxed specifications for

approximations

3. Improved precision and automation using SMT-

based checking and invariant inference

4. Proved feasibility of applying automated

verification to the domain of approximate

computing

