
Shuvendu Lahiri, Microsoft Research

Zvonimir Rakamarić, University of Utah

TOWARDS AUTOMATED DIFFERENTIAL

PROGRAM VERIFICATION FOR

APPROXIMATE COMPUTING

Collaborators: Ganesh Gopalakrishnan,

Arvind Haran, Shaobo He

INTRODUCTION

 Goal: Enable rigorous exploration of

approximate computing trade-offs

 Approach: Develop formal and automated

techniques for reasoning about approximations

 Current techniques often lack in

 rigor (e.g., dynamic analysis),

 precision (e.g., type systems), or

 automation (e.g., interactive theorem provers)

PROPOSED APPROACH

 Apply automated differential program

verification for reasoning about approximations

 Compare original and approximate program

 Encode relaxed specifications as differential

assertions

 Achieve precision and automation using SMT-

based checking and invariant inference

 Ongoing work – under submission

EXAMPLE

 Taken from
Carbin, Kim, Misailovic, Rinard, “Proving

Acceptability Properties of Relaxed Nondeterministic

Approximate Programs”, PLDI 2012

 Inspired by an open-source search engine

procedure swish(maxR:int,N:int) returns (numR:int)
{
 numR := 0;
 while (numR < maxR && numR < N)
 numR := numR + 1;
 return;

}

EXAMPLE: APPROXIMATION

procedure swish(maxR:int,N:int) returns (numR:int) {
 old_maxR := maxR;
 havoc maxR;
 assume RelaxedEq(old_maxR, maxR);
 numR := 0;
 while (numR < maxR && numR < N)
 numR := numR + 1;
 return;

}

function RelaxedEq(x:int,y:int) returns (bool) {

 (x <= 10 && x == y) || (x > 10 && y >= 10)

}

EXAMPLE: VERIFICATION

 Relaxed specification (acceptability property)

 Relates original and approximate versions of swish

(prefixed with v1. and v2. respectively)

 v1.maxR=v2.maxR && v1.N=v2.N
 RelaxedEq(v1.numR,v2.numR)

 Verification effort

 Carbin et al.

 Coq proof comprised of 330 lines of proof script

 Zvonimir et al.

 Manually provided 4 simple predicates

DIFFERENTIAL VERIFICATION

 Mutual summary relates pre- and post-states of

two procedure versions

old(v1.g = v2.g) v1.g < v2.g

 Mutual summaries are checked modularly by

constructing a product program

 Implemented in SymDiff [Lahiri et al. CAV’12]

 Handles procedure calls [Lahiri et al. FSE’13]

 Use off-the-shelf program verifier and inference

 Allows for automatic inference of specifications

 Leverages Houdini inference technique

 Based on simple candidate templates

IMPLEMENTATION

 SymDiff differential program verifier

 Implements product program generation

 Boogie performs verification condition generation

 Z3 solves generated verification conditions

 Extended automated inference of invariants

 Users can specify additional predicates

 Arbitrary Boolean combination over predicates

 Previously just conjunction

TOOL FLOW

SymDiff

Original

Program

Approximate

Program

Product

Program
Boogie +

Inference

Z3
Manual

Predicates

EVALUATION

 Acceptability of approximate programs

 Taken from Carbin et al.

 Swish++, LU Decomposition, Water

 Control flow equivalence

 ReplaceChar, Selection Sort, Bubble Sort, Array

Operations

 Introduced encoding that tracks a sequence of

visited basic blocks using uninterpreted functions

 Precisely capturing array fragments

EXPERIMENTS

Benchmark #Predicates #Manual Preds. Time(s)

Swish++ 14 4 6

LU Decomposition 32 4 7

Water 27 0 7

ReplaceChar 10 1 7

Selection Sort 66 4 307

Bubble Sort 38 4 49

Array Operations 41 1 7

FUTURE WORK

 Automate predicate generation further

 Interpolants

 Indexed predicate abstraction

 Improve scalability

 Prove relative termination

 Reason about probabilities

 Synthesis

 Connect our tool flow with an approximate

compiler

CONTRIBUTIONS

1. Applied automated differential program

verification (SymDiff) for reasoning about

approximations

2. Showed that mutual summaries naturally

express many relaxed specifications for

approximations

3. Improved precision and automation using SMT-

based checking and invariant inference

4. Proved feasibility of applying automated

verification to the domain of approximate

computing

