Approximating with Input Level Granularity

Parker Hill, Michael Laurenzano, Mehrzad Samadi Scott Mahlke, Jason Mars, Lingjia Tang

Computational Model

Each operation executed with several inputs

Input

Gamma Filter

Input

Gamma Filter

(16x8 Tiling*)
Approximation

Is this an acceptable approximation method?

Input

Gamma Filter

(16x8 Tiling*)
Approximation

^{*}Samadi et al. ASPLOS 2014

Input

Gamma Filter

(16x8 Tiling*) Approximation

^{*}Samadi et al. ASPLOS 2014

Input

Gamma Filter

(16x8 Tiling*) Approximation

^{*}Samadi et al. ASPLOS 2014

Previous Work

- Use some set of inputs to:
 - Determine if approximation is accurate enough
 - Pick fastest acceptable approximation
- Reuse the approximation for several inputs

Performance vs Accuracy

Speedup

Performance vs Accuracy

Speedup

Performance vs Accuracy

+x2 tiling approximation (5.5x speedup)

Conservative approximation → small speedup

- Conservative approximation → small speedup
- Cannot approximate more aggressively

- Conservative approximation → small speedup
- Cannot approximate more aggressively

- Conservative approximation → small speedup
- Cannot approximate more aggressively
- We would like to approximate inputs differently

Dynamic Approximation Challenges

- Must analyze accurately
 - Cannot violate TOQ
 - Need to pick a fast approximation
- Must analyze quickly
 - Limits potential speedup

- 1) Provide:
 - A set of approximations
 - Input
- 2) Apply analysis to each pair:
 - Performance
 - Output quality
- 3) Select best approximation:
 - Meets accuracy constraint
 - High performance
- 4) Apply approximation

- 1) Provide:
 - A set of approximations
 - Input
- 2) Apply analysis to each pair:
 - Performance
 - Output quality
- 3) Select best approximation:
 - Meets accuracy constraint
 - High performance
- 4) Apply approximation

- 1) Provide:
 - A set of approximations
 - Input
- 2) Apply analysis to each pair:
 - Performance
 - Output quality
- 3) Select best approximation:
 - Meets accuracy constraint
 - High performance
- 4) Apply approximation

- 1) Provide:
 - A set of approximations
 - Input
- 2) Apply analysis to each pair:
 - Performance
 - Output quality
- 3) Select best approximation:
 - Meets accuracy constraint
 - High performance
- 4) Apply approximation

- 1) Provide:
 - A set of approximations
 - Input
- 2) Apply analysis to each pair:
 - Performance
 - Output quality
- 3) Select best approximation:
 - Meets accuracy constraint
 - High performance
- 4) Apply approximation

- 1) Provide:
 - A set of approximations
 - Input
- 2) Apply analysis to each pair:
 - Performance
 - Output quality
- 3) Select best approximation:
 - Meets accuracy constraint
 - High performance
- 4) Apply approximation

- 1) Provide:
 - A set of approximations
 - Input
- 2) Apply analysis to each pair:
 - Performance
 - Output quality
- 3) Select best approximation:
 - Meets accuracy constraint
 - High performance
- 4) Apply approximation

- 1) Provide:
 - A set of approximations
 - Input
- 2) Apply analysis to each pair:
 - Performance
 - Output quality
- 3) Select best approximation:
 - Meets accuracy constraint
 - High performance
- 4) Apply approximation

- 1) Provide:
 - A set of approximations
 - Input
- 2) Apply analysis to each pair:
 - Performance
 - Output quality
- 3) Select best approximation:
 - Meets accuracy constraint
 - High performance
- 4) Apply approximation

Dynamic Oracle Selections

Optimal choice depends heavily on input

Dynamic Oracle Performance

Accuracy near TOQ

Dynamic Oracle Performance

- Accuracy near TOQ
- 61x average speedup

Dynamic Oracle Performance

- Accuracy near TOQ
- 61x average speedup (compared to 5.9x for 4x2 tiling)

Conclusion

- Adjusting approximation per input is important
 - 61x potential speedup for dynamic system
 - 5.9x potential speedup for static system
- To take advantage of this opportunity:
 - Dynamic system predicts approximation per input
 - High prediction accuracy
 - Quick predictions

Questions?