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Abstract
Energy usage in many contemporary computing systems
is constrained by factors other than computation. The ma-
jor components of energy use include transferring data on-
chip in high-performance systems, activating and accessing
sensor and display interfaces in wearable and mobile sys-
tems, and accessing and refreshing memories in all system
types. The relative proportion of energy usage due to fac-
tors outside computation will only grow in the future. This
is because many of the factors in question are functions of
system-level interconnects and packaging, which do not ben-
efit directly from semiconductor technology scaling.

There is an opportunity to improve the energy-efficiency
of computing systems by exploiting their tolerance to inac-
curacy, imprecision, and unreliability. But, seizing this op-
portunity requires approximating outside the processor, ap-
plying approximation to sensors and output devices, instead
of only focusing on the operations in computations. This ob-
servation is particularly relevant for embedded, wearable,
and mobile systems, which form the dominant (and grow-
ing) majority of the world’s computing devices.

1. Introduction
Computation is not the dominant source of instantaneous
power dissipation in many wearable and mobile systems.
These systems are often organized around sensors, whose
power dissipation when active can be larger than that of
many of the embedded processors (microcontrollers) with
which they are typically paired. The sensors are typically
sampled whenever computation is active and as a result the
fraction of overall energy usage over time attributable to
computation, relative to sensors, is also often small.

Figure 1 shows the average power dissipation when ac-
tive, for a collection of components. The components in-
clude an implementation of the lowest-power variant of the
ARM architecture currently available (Cortex-M0+1 [7]),
several state-of-the-art sensors [1, 14, 15, 22, 23] and a Blue-
tooth Low-Energy (Bluetooth LE) radio2 [21]. In addition to
computation and sensors, many wearable systems have or-
ganic light-emitting diode (OLED) displays, whose power

1 Running a while(1) loop from its on-chip SRAM at 2 MHz and 3.0 V.
2 In advertising/discoverable mode.

Processor
(0.309mW)

Bluetooth LE
(0.436mW)

20⨯20 OLED Pixels
(0.235mW)

Gyroscope
(18.300mW)

Pressure
(0.010mW)

Accelerometer
(0.312mW)

Magnetometer
(0.408mW)

Infrared/Color
(0.528mW)

Humidity
(0.540mW)

Figure 1. Sector plot of the power dissipation for several
state-of-the-art system components typical of wearable and
sensor-driven systems. The sectors are shown scaled loga-
rithmically to simplify visualization of the large range of val-
ues: Clearly, not all systems will contain a gyroscope (which
dominates the power breakdown in this collection of system
components).

dissipation is proportional to the number of pixels which
are lit and to their color (there is no backlight). We have
therefore included, for reference, the power dissipation of a
20×20 pixel subset of an OLED display, based on measure-
ments we performed on one such display panel [10].

From Figure 1, it is clear that the processor dissipates less
power when active than almost all the other components.
Since most wearable systems sample their sensors period-
ically, the energy usage over time is also likely to still be
dominated by components other than the processor.

Despite these observations that only a small fraction of
system power dissipation is attributable to computation, the
majority of existing research aimed at exploiting tolerance
of inaccuracy (distance from a ground truth), imprecision
(repeatability over time), or unreliability (probability of out-
right failure) has focused on computation [2, 6, 11, 13]. The
evidence suggests that the focus of these existing research
efforts on computation will not yield the best system-level
benefit in the important and growing class of wearable and
sensor-driven systems.

However, are there tradeoffs between accuracy, precision,
reliability, and power or energy usage in system components
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other than processors? And, can these tradeoffs be exploited
directly at the level of sensors and displays?

2. Approximate Inputs: Assumptions of Noise
The data that serve as input for many important computa-
tional problems in the real world, increasingly come from
sensors of physical phenomena of various kinds. These sen-
sors may range from accelerometers and gyroscopes in wear-
able and health-tracking systems, to continent-spanning ra-
dioastronomy telescopes.

Because there may be transient or persistent noise in
sensor data, the computational problems which consume
them, and hence the algorithms which embody these com-
pute problems, can often operate on data of varying accu-
racy, precision, or reliability. Sensors however typically re-
quire different amounts of time and energy resources to gen-
erate data of different degrees of fidelity. When hardware
and system software permit, tolerance of imprecision, inac-
curacy, and unreliability can be exploited: The tolerance can
be harnessed to achieve sensor activation and sensor data ac-
quisition which uses less energy, which is faster, or which is
cheaper to build.

Lax [18] is one example of a system that builds on
these insights. Lax improves the energy-efficiency of sensor-
driven systems by controlling the power supplies of sensors
such as gyroscopes, so that they provide inaccurate, impre-
cise, or unreliable data, but consume significantly less power.
Because of the empirically-observed variation in the type,
frequency, and severity of sensor data errors with supply
voltage, Lax uses descriptions of the amount of error that can
be tolerated by applications to determine how much energy
to save. These descriptions of tolerable error are provided in
Lax’s domain-specific language, but could in principle also
be inferred by a compiler.

In addition to circuit techniques to reduce the power dissi-
pation of sensor integrated circuit operation [18], it is possi-
ble to develop value encodings which reduce the power dis-
sipated in moving data [17] between sensing and computing
devices, at the cost of controlled data infidelity [19].

3. Approximate Outputs: Limits of Perception
Analogous to the pervasiveness of transient and persistent
noise in real-world data sources, when the results of com-
putation are consumed by the human aural or visual system,
variations in accuracy, precision, or reliability may not al-
ways be perceptible. Such variations can be exploited di-
rectly, in the generation of audio or display of results, for
lower-energy, faster, or cheaper output devices (e.g., dis-
plays). For example, for displays, a few research efforts
have investigated exploiting the variability in human sen-
sitivity across the color spectrum. This phenomenon has
been exploited to reduce power dissipation in OLED dis-
plays [4, 5, 8, 9, 12, 20, 24] as well as in those traditional
LCDs that have coarse-grained controllable backlighting [3].

Even when the results are consumed by non-human entities
such as control systems, some amount of tolerance to impre-
cision, inaccuracy, and unreliability may still exist.

The interfaces for surfacing perceptual signals, such as
displays and audio, contribute an increasing fraction of sys-
tem energy usage in wearable and mobile systems. Because
the phenomena underlying their operation (e.g., photon gen-
eration, mechanical displacement) are less amenable to im-
provements in transistor properties than computation is, their
relative importance will likely grow in the future.

4. Theoretical Bounds Inform Practical
Implementations

Computing systems can exploit tolerance to inaccuracy, im-
precision, and unreliability in computational problems, sen-
sor activation and access, I/O, and display interfaces, to the
benefit of performance, energy, and cost. But, in tandem
with developing algorithmic, systems software, and hard-
ware techniques to exploit tolerance of imprecision, inaccu-
racy, and unreliability, it is prudent to explore upper bounds
on the potential benefits thereof.

Bounds are important for several reasons. First, upper
bounds on the achievable benefits to either performance or
energy serve as a reference for the maximum time or energy
overhead that a practical technique can incur if it is to attain a
net improvement. Second, bounds often yield new or deeper
insights into the problem under investigation and are thus
interesting in their own right. For example, the investigation
of encoding efficiency of digital number representations for
approximate communication [16] has recently led to the
development of practical approximate value encoders [19].

We must study bounds on the potential benefits of ap-
proximation applied to input data, output data destined for
perception, communicated and stored data, computational
steps in algorithms, and computational problems. For ex-
ample, analogous to the Shannon efficiency bounds for
forward-error-correcting codes that guarantee the correction
of a fixed number of errors or erasures, what are the upper
bounds on overheads for representing values in programs
and microarchitectures when we are willing to tolerate inac-
curacy, imprecision, or unreliability?

5. Summary
We should exploit tolerance to imprecision, inaccuracy, and
unreliability in the subsystems which dominate performance
and energy usage. For the growing majority of the world’s
computing devices, these energy-dominant subsystems are
sensors, displays, on-chip and board-level interconnects, and
volatile and non-volatile memories. The fraction of energy
usage relative to computation attributable to these subsys-
tems will likely only grow in the future, as advances in semi-
conductor technology benefit digital logic more than they
benefit packaging and interconnects. We should think out-
side the box and approximate outside the processor.

2



References
[1] Bosch Sensortec. BMX055 Small, Versatile 9-axis Sensor

Module, Data Sheet, November 2014.

[2] M. Carbin, S. Misailovic, and M. C. Rinard. Verifying quanti-
tative reliability for programs that execute on unreliable hard-
ware. In Proceedings of the 2013 ACM SIGPLAN Interna-
tional Conference on Object Oriented Programming Systems
Languages & Applications, OOPSLA ’13, pages 33–52, New
York, NY, USA, 2013. ACM. ISBN 978-1-4503-2374-1.

[3] J. Chuang, D. Weiskopf, and T. Möller. Energy aware color
sets. Computer Graphics Forum, 28(2):203–211, 2009. ISSN
1467-8659.

[4] M. Dong and L. Zhong. Chameleon: A color-adaptive web
browser for mobile oled displays. In Proceedings of the 9th
International Conference on Mobile Systems, Applications,
and Services, MobiSys ’11, pages 85–98, New York, NY,
USA, 2011. ACM. ISBN 978-1-4503-0643-0.

[5] M. Dong, Y.-S. K. Choi, and L. Zhong. Power-saving color
transformation of mobile graphical user interfaces on oled-
based displays. In Proceedings of the 2009 ACM/IEEE Inter-
national Symposium on Low Power Electronics and Design,
ISLPED ’09, pages 339–342, New York, NY, USA, 2009.
ACM. ISBN 978-1-60558-684-7.

[6] H. Esmaeilzadeh, A. Sampson, L. Ceze, and D. Burger. Archi-
tecture support for disciplined approximate programming. In
Proceedings of the Seventeenth International Conference on
Architectural Support for Programming Languages and Op-
erating Systems, ASPLOS XVII, pages 301–312, New York,
NY, USA, 2012. ACM. ISBN 978-1-4503-0759-8.

[7] Freescale Semiconductor. Kinetis KL03 32 KB Flash 48
MHz Cortex-M0+ Based Microcontroller, Data Sheet, August
2014.

[8] T. Harter, S. Vroegindeweij, E. Geelhoed, M. Manahan, and
P. Ranganathan. Energy-aware user interfaces: An evaluation
of user acceptance. In Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems, CHI ’04, pages
199–206, New York, NY, USA, 2004. ACM. ISBN 1-58113-
702-8.

[9] D. Li, A. H. Tran, and W. G. J. Halfond. Making web
applications more energy efficient for oled smartphones. In
Proceedings of the 36th International Conference on Software
Engineering, ICSE 2014, pages 527–538, New York, NY,
USA, 2014. ACM. ISBN 978-1-4503-2756-5.

[10] One Stop Displays. OSD2828GDEDF11 OEL Display Panel,
Data Sheet, 2006.

[11] A. Sampson, W. Dietl, E. Fortuna, D. Gnanapragasam,
L. Ceze, and D. Grossman. Enerj: Approximate data types for
safe and general low-power computation. In Proceedings of
the 32Nd ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation, PLDI ’11, pages 164–174,
New York, NY, USA, 2011. ACM. ISBN 978-1-4503-0663-8.

[12] D. Shin, Y. Kim, N. Chang, and M. Pedram. Dynamic voltage
scaling of oled displays. In Proceedings of the 48th Design
Automation Conference, DAC ’11, pages 53–58, New York,
NY, USA, 2011. ACM. ISBN 978-1-4503-0636-2.

[13] S. Sidiroglou-Douskos, S. Misailovic, H. Hoffmann, and
M. Rinard. Managing performance vs. accuracy trade-offs
with loop perforation. In Proceedings of the 19th ACM
SIGSOFT Symposium and the 13th European Conference on
Foundations of Software Engineering, ESEC/FSE ’11, pages
124–134, New York, NY, USA, 2011. ACM. ISBN 978-1-
4503-0443-6.

[14] ST Microelectronics. L3G4200D MEMS Motion Sen-
sor: Ultra-stable Three-axis Digital Output Gyroscope, Data
Sheet, December 2010.

[15] ST Microelectronics. LPS25H MEMS Pressure Sensor: 260–
1260 hPa Absolute Digital Output Barometer, Data Sheet,
January 2014.

[16] P. Stanley-Marbell. Encoding efficiency of digital number rep-
resentations under deviation constraints. In IEEE Information
Theory Workshop, ITW’09, pages 203–207, Oct 2009.

[17] P. Stanley-Marbell and D. Marculescu. A programming model
and language implementation for concurrent failure-prone
hardware. In Programming Models for Ubiquitous Paral-
lelism, PMUP’06, 2006.

[18] P. Stanley-Marbell and M. Rinard. Lax: Driver interfaces for
approximate sensor device access. In 15th Workshop on Hot
Topics in Operating Systems (HotOS XV), Kartause Ittingen,
Switzerland, May 2015. USENIX Association.

[19] P. Stanley-Marbell and M. Rinard. Value-deviation-bounded
serial data encoding for energy-efficient approximate com-
munication. Technical Report MIT-CSAIL-TR-2015-022,
MIT Computer Science and Artificial Intelligence Laboratory
(CSAIL), June 2015.

[20] K. W. Tan, T. Okoshi, A. Misra, and R. K. Balan. Focus: A us-
able & effective approach to oled display power management.
In Proceedings of the 2013 ACM International Joint Confer-
ence on Pervasive and Ubiquitous Computing, UbiComp ’13,
pages 573–582, New York, NY, USA, 2013. ACM. ISBN 978-
1-4503-1770-2.

[21] Texas Instruments. CC256x Bluetooth® and Dual-Mode Con-
troller, Data Sheet, January 2014.

[22] Texas Instruments. HDC1000 Low Power, High Accu-
racy Digital Humidity Sensor with Temperature Sensor, Data
Sheet, Nov 2014.

[23] Texas Instruments. TMP006/B Infrared Thermopile Sensor in
Chip-Scale Package, Data Sheet, November 2014.

[24] M. Zhao, Y. Chen, X. Chen, and C. J. Xue. Online oled
dynamic voltage scaling for video streaming applications on
mobile devices. SIGBED Rev., 10(2):18–18, July 2013. ISSN
1551-3688.

3


	Introduction
	Approximate Inputs: Assumptions of Noise
	Approximate Outputs: Limits of Perception
	Theoretical Bounds Inform Practical Implementations
	Summary

