
Statistical Information Processing
Extending the Limits of Approximate Computing ∗

Sharad Malik Naveen Verma
Princeton University

Subhasish Mitra
Stanford University

Naresh Shanbhag
University of Illinois at

Urbana-Champaign

Abstract
Application-level tolerance to approximations is commonly ex-
ploited in approximate computing research today. This paper fo-
cuses on how this can be leveraged towards tolerance to non-
idealities in circuit/device fabrics (variations, defects). Errors due
to the computation fabrics can arise either due to reduction of
design margins, e.g., to push the limits of energy efficiency and
throughput in CMOS, or due to intrinsically-high defect rates and
variability in late-CMOS and non-mature post-CMOS fabrics. An
architectural framework referred to as statistical information pro-
cessing is presented, whereby algorithmic approaches, both explicit
and implicit, are employed with the objective of maximizing this
leverage while meeting application-level requirements. To realize
this objective, this paper highlights: (i) data-error tolerant accel-
erators based on techniques from statistical signal processing and
machine learning; (ii) effective management of catastrophic control
errors; (iii) appropriate programming models; and (iv) accurate mi-
croarchitectural and architectural error modeling based on realistic
device-level fault models.

1. Introduction
Approximate computing is motivated by the robustness of emerg-
ing data-centric applications to approximations in computation,
data representation, communication and storage, and that accept-
able approximations can significantly reduce energy consumption
and/or enhance throughput. Indeed, much of the recent work in this
area focuses on signal-processing, computer-vision, and inference
applications. In this paper, we begin by asserting that the design of
signal-processing and communication systems, in particular those
for embedded energy-constrained platforms such as smart phones
and others, have long recognized this application-level opportunity
and have employed approximations (e.g., precision optimization,
algorithmic complexity reduction, etc.) to most efficiently address
application-level metrics such as bit-error rate (BER) and signal-

∗ This work was supported in part by Systems on Nanoscale Information
fabriCs (SONIC), one of the six SRC STARnet Centers, sponsored by
MARCO and DARPA.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CONF ’yy, Month d–d, 20yy, City, ST, Country.
Copyright c© 20yy ACM 978-1-nnnn-nnnn-n/yy/mm. . . $15.00.
http://dx.doi.org/10.1145/nnnnnnn.nnnnnnn

to-noise ratio (SNR). This paper proposes to extend the domain of
approximate computing by leveraging this application-level toler-
ance to approximations towards tolerance to non-idealities in cir-
cuit/device fabrics, e.g., reduced design margins, variations, and
defects, which result in stochastic fabrics. We propose an archi-
tectural framework referred to as statistical information process-
ing (SIP), which employs algorithmic approaches to maximize this
leverage while meeting application-level requirements.

The circuit/device fabrics used to implement computing sys-
tems have always been stochastic. However, by-and-large, comput-
ing systems to date have been designed to produce deterministic
outputs by relying on low-level mechanisms for hiding stochastic
behaviors (e.g., noise margins for digital gates), all of which im-
pose costs on system resources (energy, area, performance). Today,
the increase in stochastic behaviors in advanced and emerging tech-
nologies has made the expense of low-level mechanisms unaccept-
able. Coupled with the application-level tolerance to approxima-
tions, this begs the question of whether stochastic behaviors in cir-
cuits/devices are best handled at the lowest levels as in the past, or
instead at higher levels, where aggregate behaviors and application-
level tolerance can be leveraged to a much greater extent.

How algorithmic approaches can be incorporated in the archi-
tectures to enable the SIP vision is a question that has many facets.
We envision a SIP architecture to comprise a large number of data
error-tolerant accelerators managed by an error-tolerant controller.
In the sections below, we consider the following: 1) data error-
tolerance in accelerators, ranging from statistical estimation and
detection techniques to machine learning and inference; 2) effec-
tive management of control-flow errors; 3) programming models
necessary for mapping statistical applications to SIPs; and 4) mod-
eling of faults and errors, from fabrics to architectures.

2. Data Error-Tolerant Accelerators
We have proposed the use of algorithm-level techniques to com-
pensate for data errors that arise due to reduced design margins
and/or increased nanoscale variabilities and defects. These tech-
niques achieve error compensation either explicitly, i.e., via an ex-
plicit error compensator [Statistical Error Compensation (SEC)]
much as a communication receiver which compensates for channel
errors, or implicitly via the use of adaptation and learning that arise
in the implementation of machine-learning kernels [Data-Driven
Hardware Resiliency (DDHR)]. We refer to these as Shannon-
inspired or communications-inspired, as in both cases statistical in-
ference is employed for error compensation.

The SEC techniques such as algorithmic noise-tolerance (ANT)
[5], stochastic sensor network-on-a-chip (SSNOC) [7], soft NMR
[6], and likelihood processing (LP) [2] all employ parametric mod-
els of signal and noise to compensate for errors. SEC consists
of permitting the circuit fabric to exhibit errors beyond the lim-

its of application-level error-tolerance so that catastrophic loss in
application-level metrics is observed, and then employing error-
compensation techniques based on statistical estimation and de-
tection to restore the observed performance to within the desired
envelope. SEC techniques have shown to be effective in the pres-
ence of both dynamic errors caused by timing violations as a result
of reduced design margining, e.g., voltage overscaling or soft er-
rors due to single event upsets, as well as errors caused by defects
and variations. Our approach has already been proved in theory and
practice with measured results from integrated circuit implementa-
tions. The latter [1, 7] demonstrate a 600×-to-2000× enhancement
in robustness (ability to handle error rates of up to 80%) and 4×-to-
6× enhancement in energy efficiency over conventional determin-
istic/approximate designs.

Machine-learning algorithms enable data-driven methods for
creating robust models of processes for which strong analytical
models do not exist. This attribute gives rise to a class of meth-
ods for realizing error-tolerant computing systems. DDHR ex-
ploits machine learning to model variances caused not only due
to application-level data, but also due to computational errors [11].

Emulating randomly-located stuck-at faults in digital blocks,
we have observed that resulting computational errors essentially
manifest as perturbations in the statistical distributions of the data
being analyzed. With a strong machine-learning classifier, the new
distributions can be learned in the form of an “error-aware model”,
enabling high inference performance even in the presence of severe
fault rates. Research in DDHR has led to both an understanding of
the achievable performance levels as well as system algorithms and
architectures for practical implementation. With regards to system
algorithms, methods have been demonstrated for fully embedded
training of the error-aware model. Further, the DDHR concept
has been extended to enable error-tolerance within the inference
kernel itself [12]. These ideas have been employed in systems
demonstrating high inference performance in fault-affected digital
circuits [11], energy-efficient analog circuits [15], and variation-
prone emerging technologies [8].

3. Managing Catastrophic Control Errors
While applications may be tolerant to data errors, control errors
can be catastrophic. They can lead to an application crashing,
hanging or executing code inconsistent with the application al-
gorithm. Similarly, errors in operand addressing can lead to seg-
mentation errors. One approach to manage this fragility is to en-
force complete fault tolerance through expensive circuit protec-
tion mechanisms. However, our work [13] has shown that even
in error-tolerant media applications, greater than 60% of instruc-
tions impact control flow or operand addressing. Thus, protecting
all logic to execute these instructions would be prohibitive. Our
work has considered two alternate low-cost solutions to address
this. In the ERSA (Error-Resilient System Architecture) approach,
the main control thread runs on a fully protected strongly reliable
core (SRC), while worker threads run on mostly unprotected re-
laxed reliability cores (RRCs) [3]. For applications where a large
number of worker threads can be spawned, the amortized overhead
of the SRC is low. A subsequent work (the YMM Partially Pro-
tected Unit or PPU) focuses on reducing the protection costs of
even a single core and shows how, with minimal microarchitecture
support, control errors can be managed [13]. Both ERSA and the
YMM-PPU follow a principle of execution-on-a-leash, by allowing
control errors, but reining in large deviations using program infor-
mation and architectural support.

4. Programming Models
Appropriate programming models help leverage application error-
tolerance in error-tolerant execution. For data error-tolerance, this
can be through annotations specifying error-tolerant data or func-
tions, e.g., [9]. In our work, we take this a step-further to see how
programming models can be utilized to manage control-flow er-
rors. ERSA uses a do-all programming model to identify worker
threads to be spawned on the RRCs [3]. The YMM-PPU uses the
Stream-It programming model [10] to demarcate frame processing
boundaries. This allows storing expected control flow as a sequence
of frame processing steps, and abandoning the current frame pro-
cessing by jumping to the next frame [13, 14] during large control
flow errors. This exploits the error-tolerance of individual frames.

5. Fault and Error Models
Low-level physical effects result in faults in the physical computing
fabric (devices, interconnect) with corresponding errors up the lay-
ers of abstraction. Understanding this propagation across the lay-
ers through accurate modeling is critical to developing architec-
tural solutions to manage them. Error injection continues to be the
dominant approach for this purpose. Hence, choosing the correct
error injection technique is of primary importance. Many low-level
(e.g., flip-flop-level) error injection techniques require long execu-
tion times and significant memory. On the other hand, high-level
error injections at the architecture or memory levels are fast but can
be inaccurate. Hence, it is essential to quantify the inaccuracies of
such error injections, and to analyze the sources of these inaccura-
cies. Our results [4] demonstrate that inaccuracies associated with
“high-level” error injection can be up to an order of magnitude on
average, ranging from an underestimation by 0.07× to an overesti-
mation by 45× in terms of observed erroneous outcome rate. Such
inaccuracies can result in overly pessimistic design decisions, or
optimistic design choices that may not meet application require-
ments. A detailed error propagation analysis explains how existing
high-level error injection techniques directly model less than 1% of
errors at the hardware level, resulting in such inaccuracies.

Such analyses are essential because they create new research
opportunities. Fast error injection techniques combining accurate
low-level simulators and fast high-level simulators (including sta-
tistical and machine learning techniques) may be used to accurately
quantify the robustness of large-scale systems. They also help initi-
ate new dialog between various research communities (e.g., system
software, architecture, design automation) on cost-effective ways
of designing, verifying, and qualifying robust systems.

6. Implications on Architectures
There are two main insights that drive our view on statistical in-
formation processors: (i) there is a rich set of error-tolerant accel-
erators that can be designed using signal processing and machine-
learning techniques and (ii) control with current fine grained in-
struction sets is very fragile, but control errors can be managed
to through limited protection and microarchitectural support. This
points to architectures that are accelerator-rich and have coarse-
grained instructions/macros that can utilize them. While there is
an emerging trend for accelerator-rich architectures motivated by
energy/execution-time benefits, our work shows the added bene-
fit of error-tolerance. Further, in coarse-grained instruction archi-
tectures, the control flow instructions are clearly separated from
data-computation and thus easier to protect, either partially or com-
pletely. Effective fault and error models, together with analysis
techniques spanning various layers of abstraction, play a crucial
role in understanding these trade-offs. We are currently designing
a statistical information processor based on this learning from our
foundational work briefly discussed above.

References
[1] R. A. Abdallah and N. R. Shanbhag. A 14.5 fj/cycle/k-gate, 0.33 v

ecg processor in 45nm cmos using statistical error compensation. In
Custom Integrated Circuits Conference (CICC), 2012 IEEE, pages 1–
4. IEEE, 2012.

[2] R. A. Abdallah and N. R. Shanbhag. Robust and energy-efficient mul-
timedia systems via likelihood processing. IEEE Tran. on Multimedia,
15(2), February 2013.

[3] H. Cho, L. Leem, and S. Mitra. Ersa: Error resilient system archi-
tecture for probabilistic applications. Computer-Aided Design of In-
tegrated Circuits and Systems, IEEE Transactions on, 31(4):546–558,
2012.

[4] H. Cho, S. Mirkhani, C.-Y. Cher, J. A. Abraham, and S. Mitra. Quan-
titative evaluation of soft error injection techniques for robust sys-
tem design. In Design Automation Conference (DAC), 2013 50th
ACM/EDAC/IEEE, pages 1–10. IEEE, 2013.

[5] R. Hegde and N. R. Shanbhag. Soft digital signal processing. IEEE
Tran. on VLSI Systems, 9(6), December 2001.

[6] E. P. Kim and Shanbhag. Soft n-modular redundancy. IEEE Tran. on
Computers, 61(3), March 2012.

[7] E. P. Kim, D. J. Baker, S. Narayanan, N. R. Shanbhag, and D. L.
Jones. A 3.6-mw 50-mhz pn code acquisition filter via statistical error
compensation in 180-nm cmos. IEEE Tran. on VLSI Systems, 23(3),
March 2015.

[8] W. Rieutort-Louis, T. Moy, Z. Wang, S. Wagner, J. C. Sturm, and
N. Verma. A large-area image sensing and detection system based
on embedded thin-film classifiers. In Intl Solid-State Circuits Conf.
Tech. Dig. of Papers, pages 292–293, Feb. 2015.

[9] A. Sampson, W. Dietl, E. Fortuna, D. Gnanapragasam, L. Ceze, and
D. Grossman. Enerj: approximate data types for safe and general low-
power computation. In Programming Language Design and Impl.,
2011.

[10] W. Thies, M. Karczmarek, and S. Amarasinghe. Streamit: A language
for streaming applications. In Compiler Construction, pages 179–196.
Springer, 2002.

[11] Z. Wang, K. H. Lee, and N. Verma. Overcoming computational errors
in low-power sensing platforms through embedded machine-learning
kernels. IEEE Tran. on VLSI Systems, PP(99), Aug. 2014. .

[12] Z. Wang, R. Schapire, and N. Verma. Error-adaptive classifier boost-
ing (EACB): Exploiting data-driven training for highly fault-tolerant
hardware. In Int. Conf. on Acoustics, Speech and Signal Processing,
pages 3884–3888, 2014.

[13] Y. Yetim, M. Martonosi, and S. Malik. Extracting useful computation
from error-prone processors for streaming applications. In Design, Au-
tomation Test in Europe Conference Exhibition (DATE), 2013, March
2013.

[14] Y. Yetim, S. Malik, and M. Martonosi. Commguard: Mitigating com-
munication errors in error-prone parallel execution. In Proceedings
of the Twentieth International Conference on Architectural Support
for Programming Languages and Operating Systems, ASPLOS ’15,
2015.

[15] J. Zhang, Z. Wang, and N. Verma. A matrix-multiplying ADC imple-
menting a machine-learning classifier directly with data conversion.
In Intl Solid-State Circuits Conf. Tech. Dig. of Papers, pages 332–333,
Feb. 2015.

