
Towards Automated Differential Program
Verification for Approximate Computing

Shuvendu K. Lahiri
Microsoft Research, Redmond, WA, USA

shuvendu@microsoft.com

Zvonimir Rakamarić
School of Computing, University of Utah, UT, USA

zvonimir@cs.utah.edu

Abstract
Approximate computing is an emerging area for trading off the ac-
curacy of an application for improved performance, lower energy
costs, and tolerance to unreliable hardware. However, care has to
be taken to ensure that the approximations do not cause signifi-
cant divergence from the reference implementation. Previous re-
search has proposed various metrics to guarantee several relaxed
notions of safety for the design and verification of such approxi-
mate applications. However, current approximation verification ap-
proaches often lack in either precision or automation. On one end
of the spectrum, type-based approaches lack precision, while on
the other, proofs in interactive theorem provers require significant
manual effort.

In this work, we apply automated differential program verifica-
tion (as implemented in SymDiff) for reasoning about approxima-
tions. We show that mutual summaries naturally express many re-
laxed specifications for approximations, and SMT-based checking
and invariant inference can substantially automate the verification
of such specifications. We demonstrate that the framework signif-
icantly improves automation compared to previous work on using
Coq. Our results indicate the feasibility of applying automated veri-
fication to the domain of approximate computing in a cost-effective
manner.

1. Introduction
Continuous improvements in per-transistor speed and energy effi-
ciency are fading, while we face increasingly important concerns of
power and energy consumption, along with ambitious performance
goals. The emerging area of approximate computing aims at lower-
ing the computational effort (e.g., energy) of an application through
controlled (small) deviations from the intended results. There is a
growing need to develop formal and automated techniques that al-
low approximate computing trade-offs to be explored by develop-
ers.

Prior research has ranged from the use of types [18], static re-
liability analysis [8] or interactive theorem provers [7] to study the
effects of approximations while also providing formal guarantees.
While these techniques have significantly increased the potential
to employ approximate computing in practice, a drawback is that
they either lack the required level of precision or degree of automa-
tion. More importantly, these works do not harness the continuous
advances in Satisfiability Modulo Theories (SMT) [5] based auto-
matic software verification [3, 15]. SMT-based approaches have the
potential of providing a good balance of precision and scalability,
without sacrificing automation, at least for a large class of programs
written in imperative languages such as C/C++, Java, or C#.

In this work, we apply automated differential program verifi-
cation [10, 13] (implemented in SymDiff [12]) towards the prob-

lem of logical1 reasoning about program approximations. Previous
work has shown that structural similarity of closely-related pro-
grams can be exploited to perform automated verification of rel-
ative safety for assertions [13]. Although formalisms based on Re-
lational Hoare Logic [6] have been around for reasoning about re-
lational properties, such verifiers are mostly based on interactive
theorem provers (e.g., Coq [1]). This precludes leveraging auto-
matic verification condition generation [4], SMT-based checking,
and invariant inference. In this work, we unify two ideas in SymDiff
to harness the power of SMT solvers towards differential verifica-
tion. First, we use the concept of mutual summaries for specifying
relational (two-program) properties related to approximation [10].
Second, we use a novel product program construction for differen-
tial assertion checking that permits procedural programs, and al-
lows leveraging off-the-shelf program verifiers and invariant infer-
ence engines [13]. We describe how the construction can be used
to check mutual summary specifications as well. The framework
enables inference of simple relational invariants using existing pro-
gram verifiers. In particular, we can use a form of predicate abstrac-
tion in a scalable manner to infer many relational properties.

We have applied SymDiff towards an approximate computing
case study to illustrate the modeling, specification, and proof of
several acceptability conditions for approximate transformations
studied by Carbin et al. [7]. Carbin et al. developed a domain-
specific language for specifying approximations and acceptability
conditions, and performed the verification of several examples us-
ing interactive theorem prover Coq. These examples cover approx-
imations due to truncating loops, unreliable memory, and relative
memory safety [13]. Overall, their proofs for three examples re-
quired around 955 lines of Coq proof script — this makes it difficult
to scale the effort to larger programs or hundreds of such programs.
In contrast, our verification in SymDiff requires less than 10 lines
of specifications. 2

2. Differential Program Verification
We briefly cover our recent works on differential program verifica-
tion [10, 13] to verify (relational) properties over two programs, as
implemented in the SymDiff tool [12]. SymDiff uses mutual sum-
maries [10] as a specification mechanism for relational properties.
Given two versions of a procedure, a mutual summary is an expres-
sion over their input and output variables that relates the pre- and
post-states of the two versions. The following is a simple mutual
summary example:

old(v1.g = v2.g)⇒ v1.g ≤ v2.g.

1 We distinguish from approaches that provide provide probabilistic guar-
antees regarding approximations [8].
2 More details can be found in an accompanying technical report [14].

function RelaxedEq(x:int, y:int) returns (bool) {
(x <= 10 && x == y) || (x > 10 && y >= 10)

}
procedure swish(max_r:int, N:int)

returns (num_r:int) {
old max r := max r; havoc max r;

assume RelaxedEq(old max r, max r);

num_r := 0;
while (num_r < max_r && num_r < N)
num_r := num_r + 1;

return;
}

Figure 1. Swish++ Example

We check such mutual summary specifications using a method
based on a novel product program transformation [13]. Although
the transformation was proposed for differential assertion checking,
we show that the construction can be used to check more general
mutual summary specifications. These mechanisms are well-suited
for reasoning about programs with multiple (recursive) procedures.
More importantly, the technique allows for leveraging any off-the-
shelf invariant inference engine to infer intermediate specifications
required to prove the desired specification. In this work, we lever-
age the implementation of the Houdini [9] (monomial predicate ab-
straction) inference technique available in Boogie [11]. This allows
SymDiff to communicate domain-specific (mutual specifications)
to the invariant inference engine. Using this inference technique,
we are able to infer many intermediate invariants for many realistic
examples, as we discuss next. 3

3. Acceptability of Approximate Programs
We illustrate the application of differential verification towards two
examples from a recent work by Carbin et al. [7]. The authors de-
veloped a special-purpose language to specify the transformations
and reason about the relaxed specifications. They used the general
purpose Coq theorem prover [1] to discharge proof obligations;
each proof required roughly 300 lines of proof scripts according
to the authors. By leveraging existing program verifiers and SMT
solvers, we obtain the proofs almost completely automatically. In
both cases, the final verification takes less than a second.

3.1 Dynamic Knobs
Fig. 1 gives the example from an open-source search engine
Swish++. The approximation (referred to as Dynamic Knobs) al-
lows the search engine to trade-off the number of search results to
display to the user under heavy server load. The approximation is
justified as users are typically interested in the top few results, and
care more about the performance of displaying the search results.
The program swish takes as input (a) a threshold for the maximum
number of results to display max r, and (b) the total number of
search results N. It returns the number num r denoting the actual
number of results to display, which has to be bounded by max r
and N.

Approximation The underlined statements denote the approxi-
mation that non-deterministically changes the threshold to a pos-
sibly smaller number, without suppressing the top few (10 in this
case) results. The predicate RelaxedEq denotes the relationship be-
tween the original and the approximate value — the important part
is that approximate value has to be at least 10 when the original
value exceeds 10.

3 Details of other examples and benchmarks can be found at http://1drv.
ms/1A5wuuj

function A(i:int, j:int) returns (int);
const e:int; axiom e >= 0;
function RelaxedEq(x:int, y:int) returns (bool) {
x <= y + e && y <= x + e

}
procedure lu(j:int, N:int, max0:int)

returns (max:int, p:int) {
i := j+1; max := max0;
while (i < N) {
a := A(i, j);
old a := a; havoc a; assume RelaxedEq(old a,a);

if (a > max) { max := a; p := i; }
i := i + 1;

}
return;

}

Figure 2. LU Decomposition Example

Relaxed Specification The relaxed specification (akin to accept-
ability property [7, 17]) can be expressed as a mutual summary
over the original and approximate version (prefixed with v1. and
v2. respectively) of swish as follows:

old(v1.max r = v2.max r ∧ v1.N = v2.N)⇒
v1.RelaxedEq(v1.num r, v2.num r).

The user only has to specify the postcondition

ensures v1.RelaxedEq(v1.num r, v2.num r)

for MS v1.swish v2.swish, since the antecedent (with equalities)
is already present for the top-level procedures.

Verification We required few additional intermediate specifica-
tions (beyond the relaxed specification) for the proof. Recall that
loops are automatically extracted as tail-recursive procedures in
SymDiff. The additional intermediate specification is the relational
expression v1.RelaxedEq(v1.num r, v2.num r) as both requires
and ensures for the product of the two loop-extracted procedures.
All the remaining invariants are automatically inferred. In compar-
ison, the Coq proof comprised of 330 lines of proof script.

3.2 Approximate Memory and Data Type
Fig. 2 gives a portion of the LU Decomposition algorithm imple-
mented in SciMark2 benchmark suite [2]. The algorithm computes
the index of the pivot row p for a column j, where the pivot row
contains the maximum value among all rows in the column. It re-
turns the index p of the pivot in addition to the value of the maxi-
mum element in column j.

Approximation The underlined statements model the introduc-
tion of an error value e if the matrix is stored in approximate
memory [16]. As before, the predicate RelaxedEq denotes the re-
lationship between the original and approximate value read from
the memory, which are bounded by a non-negative constant e.

Relaxed Specification Similar to Swish++, the relaxed specifica-
tion for the pair of lu procedures is specified by the postcondition
on MS v1.lu v2.lu:

ensures RelaxedEq(v1.max, v2.max).

Verification The only additional intermediate specifications are
the expression v1.RelaxedEq(v1.max, v2.max) as both requires
and ensures for the product of the two loop-extracted procedures,
which is similar to the previous example. Remaining invariants are
automatically inferred. In comparison, the Coq proof comprised of
315 lines of proof script.

References
[1] The Coq proof assistant. http://coq.inria.fr.
[2] SciMark 2.0. http://math.nist.gov/scimark2.
[3] T. Ball, R. Majumdar, T. D. Millstein, and S. K. Rajamani. Automatic

predicate abstraction of C programs. In ACM SIGPLAN Conference
on Programming Language Design and Implementation (PLDI), pages
203–213, 2001.

[4] M. Barnett, B.-Y. E. Chang, R. DeLine, B. Jacobs, and K. R. M. Leino.
Boogie: A modular reusable verifier for object-oriented programs. In
International Symposium on Formal Methods for Components and
Objects (FMCO), pages 364–387, 2006.

[5] C. Barrett, A. Stump, and C. Tinelli. The SMT-LIB standard: Version
2.0. In International Workshop on Satisfiability Modulo Theories
(SMT), 2010.

[6] N. Benton. Simple relational correctness proofs for static analyses and
program transformations. In ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages (POPL), pages 14–25, 2004.

[7] M. Carbin, D. Kim, S. Misailovic, and M. C. Rinard. Proving accept-
ability properties of relaxed nondeterministic approximate programs.
In ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI), pages 169–180, 2012.

[8] M. Carbin, S. Misailovic, and M. C. Rinard. Verifying quantita-
tive reliability for programs that execute on unreliable hardware. In
ACM SIGPLAN International Conference on Object-Oriented Pro-
gramming, Systems, Languages and Applications (OOPSLA), pages
33–52, 2013.

[9] C. Flanagan and K. R. M. Leino. Houdini, an annotation assistant
for ESC/Java. In International Symposium of Formal Methods Europe
(FME), pages 500–517, 2001.

[10] C. Hawblitzel, M. Kawaguchi, S. K. Lahiri, and H. Rebelo. Towards
modularly comparing programs using automated theorem provers. In

International Conference on Automated Deduction (CADE), pages
282–299. Springer, 2013.

[11] S. K. Lahiri, S. Qadeer, J. P. Galeotti, J. W. Voung, and T. Wies. Intra-
module inference. In International Conference on Computer Aided
Verification (CAV), pages 493–508, 2009.

[12] S. K. Lahiri, C. Hawblitzel, M. Kawaguchi, and H. Rebêlo. SymDiff:
A language-agnostic semantic diff tool for imperative programs. In In-
ternational Conference on Computer Aided Verification (CAV), pages
712–717, 2012.

[13] S. K. Lahiri, K. L. McMillan, R. Sharma, and C. Hawblitzel. Differ-
ential assertion checking. In Joint Meeting of the European Software
Engineering Conference and ACM SIGSOFT Symposium on the Foun-
dations of Software Engineering (ESEC/FSE), pages 345–355, 2013.

[14] S. K. Lahiri, A. Haran, S. He, and Z. Rakamarić. Automated dif-
ferential program verification for approximate computing. Technical
report, Microsoft Research, 2015. http://research.microsoft.
com/apps/pubs/default.aspx?id=246381.

[15] K. L. McMillan. An interpolating theorem prover. In International
Conference on Tools and Algorithms for the Construction and Analysis
of Systems (TACAS), pages 16–30, 2004.

[16] J. Nelson, A. Sampson, and L. Ceze. Dense approximate storage in
phase-change memory. In Ideas and Perspectives session at ASPLOS,
2001.

[17] M. Rinard. Acceptability-oriented computing. In ACM SIGPLAN
International Conference on Object-Oriented Programming, Systems,
Languages, and Applications (OOPSLA), pages 221–239, 2003.

[18] A. Sampson, W. Dietl, E. Fortuna, D. Gnanapragasam, L. Ceze, and
D. Grossman. EnerJ: Approximate data types for safe and general low-
power computation. In ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI), pages 164–174, 2011.

