
Approximating with Input Level Granularity

Parker Hill, Michael A. Laurenzano, Mehrzad Samadi, Scott Mahlke, Jason Mars, Lingjia Tang

University of Michigan - Ann Arbor, MI
{parkerhh, mlaurenz, mehrzads, mahlke, profmars, lingjia}@umich.edu

Abstract
Approximate computing is a technique for bridging the
growing imbalance between computational power and
computational needs by trading small amounts of accu-
racy for large amounts of performance or energy. Cur-
rent approximate computing techniques are configured
to choose how to approximate based either on train-
ing inputs that are representative of the “real” input
or on occasional runtime checks that compare the ex-
act results to those of the approximation and adjust ac-
cordingly. We argue that because these approaches are
based on worst or average case behavior, they cannot
make the most of each input and thus they are bound
to either cause excessive error or leave performance on
the table. We introduce input level granularity, an ap-
proach that may make it possible to achieve good per-
formance and acceptable accuracy on every input.

1. Background
A number of approximate computing systems deter-
mine the approximation method offline [1–3]. This re-
quires that a representative training input set is avail-
able to determine whether or not an approximation
technique is acceptable. A representative training in-
put set must consist of inputs that accurately model the
distribution of possible inputs that may arise during

[Copyright notice will appear here once ’preprint’ option is removed.]

execution. Although it is possible, with domain spe-
cific knowledge, to build ideal training sets, the char-
acteristics of such systems are still restricted to choose
between unacceptable accuracy or conservative perfor-
mance before execution.

Another technique that has been proposed involves
periodically calibrating the system by computing the
approximate and exact outputs for the current input [4,
5]. During this calibration step, if the error is too high,
then the system will resort to a less aggressive approxi-
mation method. Similarly, it will become more aggres-
sive if the error is below a specific accuracy threshold.
Although this has more flexibility than the static ap-
proach, the frequency parameter of periodic calibration
forces the user of this method to make a similar de-
cision between meeting the target output quality and
providing high performance.

Based on the drawbacks of these techniques, we be-
lieve that an important next step in approximate com-
puting is to build systems that dynamically choose the
approximation method based only on the current input
being processed. This circumvents the issue of picking
a training set, since each input is treated independently.
Additionally, when all choices are based only on the
current input, the issue between violating accuracy con-
straints and being overly conservative is nonexistent.

2. Input Level Granularity
When difficult to approximate, but unlikely, inputs oc-
cur, a static system will consistently yield unacceptable
results for these inputs. Although on average the static
system will appear to perform correctly, it is not un-
likely that there exists a correlation between error and
specific inputs which may provide a poor user expe-
rience. For example, if an intelligent personal assistant
always approximates the audio from a very weak signal

1 2015/3/30



as it would for a strong signal, then the specific users
in this situation will continuously receive unusable re-
sults. On the other hand, it would not be practical to se-
lect an approximation configuration that would satisfy
all situations. This level of approximation would be un-
likely to provide any substantial performance gains at
all.

In order to provide more aggressive approximation
methods while still maintaining acceptable accuracy
per input, rather than on average, we propose a system
that makes decisions at an input level granularity. This
is also favorable from the user’s point of view, since
the user expects that each result that they see meets a
certain quality threshold.

A high level illustration of how such a system might
work is provided in Figure 1. First, the input is given to
an analysis mechanism that observes various character-
istics of the input. Using these parameters, the analysis
engine marks each approximation method with an ex-
pected accuracy level and speedup. The expected run-
time properties are given to the selection module. This
module picks the approximation method with the high-
est performance that is expected to meet the accuracy
bound set by the user. For example, Method1 in the
figure may be excluded if the desired accuracy level
is 90% and Method2 is selected over Method3, since
Method2 has higher speedup. Finally, the full input is
passed to the selected approximation algorithm to pro-
duce the output.

Assuming that the analysis provided representative
metrics, then the chosen approximation will be ap-
proaching maximal performance across contrasting in-
puts without increasing the risk of violating an accu-
racy target. The two sources of reduced performance in
the system are from incorrectly analyzing an approxi-
mation method and from the overhead of the analysis.

The central challenge in building this system is that
the analysis engine must be engineered in such a way
that it provides reasonably accurate error and perfor-
mance estimates of each approximation method, but at
the same time it must execute quickly to avoid dimin-
ishing the gains of approximating. The optimal set of
input or output values to observe and the right charac-
teristics of these sets to use is critical to the success of
this technique.

Although it is not trivial to determine an appropriate
mechanism for analysis, we believe that the intrinsi-
cally low maximum performance gains of static and

Input Analysis

Selection

Result

Method2
92%, 6x

Method1
85%, 9x

Method3
91%, 5x

Method2
92%, 6x

Figure 1: High level design of an approximation run-
time system that makes choices at an input level gran-
ularity.

calibration based systems will result in the success
of input dependent approximation techniques. Static
approximation is limited by the most difficult to ap-
proximate case and calibration-based approximation
is limited because it occasionally calculates exact re-
sults. Approximation with input level granularity, on
the other hand, is only limited by the amount of time
required to calculate reasonable estimates of the char-
acteristics of the input.

References
[1] H. Esmaeilzadeh, A. Sampson, L. Ceze, and D. Burger.

Neural acceleration for general-purpose approximate
programs. In Proceedings of the 2012 45th Annual
IEEE/ACM International Symposium on Microarchitec-
ture, pages 449–460. IEEE Computer Society, 2012.

[2] H. Hoffmann, S. Misailovic, S. Sidiroglou, A. Agar-
wal, and M. Rinard. Using code perforation to improve
performance, reduce energy consumption, and respond
to failures. In MIT Tech Report (MIT-CSAIL-TR-2009-
042), 2009.

[3] M. Rinard. Probabilistic accuracy bounds for fault-
tolerant computations that discard tasks. In International
Conference on Supercomputing (ICS), 2006.

[4] M. Samadi, D. A. Jamshidi, J. Lee, and S. Mahlke. Para-
prox: Pattern-based approximation for data parallel ap-

2 2015/3/30



plications. In Proceedings of the 19th international
conference on Architectural support for programming
languages and operating systems, pages 35–50. ACM,
2014.

[5] M. Samadi, J. Lee, D. A. Jamshidi, A. Hormati, and
S. Mahlke. SAGE: Self-tuning approximation for
graphics engines. In Proceedings of the 46th Annual
IEEE/ACM International Symposium on Microarchitec-
ture, pages 13–24. ACM, 2013.

3 2015/3/30


