
Approximate Program Synthesis

James Bornholt Emina Torlak Luis Ceze Dan Grossman
University of Washington

{bornholt, emina, luisceze, djg}@cs.washington.edu

Abstract
Existing programming models for approximate computing
apply to only restricted classes of programs and approxima-
tions, or require special-purpose hardware. A programming
model that lifts these restrictions while being accessible to
programmers is a central unsolved challenge in the field.

This paper proposes the use of program synthesis to auto-
mate approximate programming. Program synthesis automat-
ically produces a program that meets a desired correctness
specification, and has seen success in a number of application
domains. We formalize the approximate synthesis (AppSyn)
problem as the task of finding an optimal program that is
approximately correct, and show how existing approxima-
tion techniques fit into this framework. We show how to
solve AppSyn problems efficiently with sketch-based pro-
gram synthesis. The results, which show novel approxima-
tions to benchmarks from the literature, suggest that synthesis
is a promising approach to approximate computing.

1. Program Synthesis
Program synthesis is the task of automatically producing
a program that meets a desired correctness specification.
Search-based synthesis [1, 5, 6, 11, 15, 16] addresses this
problem by searching for a correct program in a space of
candidate implementations defined by a syntactic template
(e.g., a context-free grammar [1]). Search-based synthesis
has seen success as a programming model in a variety of
domains, including low-power spatial computing [10], bulk-
synchronous distributed programming [18], browser layout
engines [7], and cache coherence protocols [16].

A program synthesizer takes as input a specification,
which could be a complete formal specification in some logic,
a set of input-output examples, or even a complete reference
implementation. It then searches a space of candidate imple-
mentations for a program that meets this specification. For
example, if the input specification is a logical formula, a
synthesizer might use an SMT solver to try to solve for a
program implementation that satisfies the specification over
all inputs [5]. Many different techniques exist to explore the
candidate space effectively. The key productivity benefit of
program synthesis is that it abstracts the what from the how:
the programmer specifies what the program should do, and
the synthesizer discovers how the program can do it.

2. Approximate Program Synthesis
Approximate computing presents a difficult programming
problem. Fresh from having implemented a complex program
under familiar, precise semantics, approximate computing
asks the programmer to now relax the program’s behavior to
make it less accurate but more efficient.

Program synthesis is a potential solution to this program-
ming challenge. Synthesis is a good fit for approximate com-
puting because the programmer’s precise implementation
can serve as the specification for synthesis. In principle, the
programmer need only provide the reference and a desired
accuracy bound, and the synthesizer will discover an approxi-
mate implementation that satisfies this bound. However, the
synthesizer must also be able to validate that the resulting
program will be more efficient than the reference.

We formalize this notion as the approximate synthesis
(AppSyn) problem. Approximate synthesis (Def. 1) searches
a space of candidate programs LP for the lowest-cost imple-
mentation P that acceptably approximates the behavior of a
reference program S. The search is performed with respect to
a correctness relation φ and a cost function κ .

DEFINITION 1 (Approximate Synthesis). Let L be a pro-
gramming language; JPK denote the function defined by a pro-
gram P ∈ L; and JLK the set {JPK |P ∈ L} of all functions rep-
resentable by L. Given a reference program S ∈ L, a correct-
ness relation φ ⊆ JLK×JLK, a cost function κ : L→ JLK→R,
and a set of candidate programs LP ⊆ L, the approximate
synthesis (AppSyn) problem is to find a program P ∈ LP such
that φ(JPK,JSK) holds and κ(P,JPK) is minimal.

The correctness relation φ constrains the semantics of the
synthesized program P with respect to the reference imple-
mentation S. It therefore controls how the program is ap-
proximate. For example, a programmer could require that
all approximate outputs are within 5% of the corresponding
precise output, or that outputs of the approximate program are
precise with some probability p. The cost function κ ensures
that approximate synthesis produces an efficient program.

Existing Techniques as AppSyn Problems. Chisel [8] ap-
proximates computational kernels by replacing instructions
with more efficient approximate versions, while satisfying
a programmer-specified accuracy and reliability constraint.

1 2015/5/28



The programmer-provided constraint form the correctness
relation φ , and Chisel’s energy model is the cost function κ .
Chisel finds the most efficient program satisfying the quality
constraints by solving an integer linear programming prob-
lem, which can be seen as a form of synthesis.

Similarly, loop perforation [12] transforms computation-
ally intensive loops to skip some iterations. A loop perforator
takes a reference implementation and explores a space of
candidate programs defined by trying different loop strides
and bounds. The search obeys some desired quality constraint
φ and generally measures the cost κ by executing the can-
didate program on a test suite. Many other approximation
techniques, including coarse-grained approximations such as
neural acceleration [4], also fit the AppSyn framework.

3. Feasibility of Approximate Synthesis
We conducted a series of experiments to determine if exist-
ing program synthesizers can solve approximate synthesis
problems. We used three state-of-the-art solvers from the
syntax-guided synthesis (SyGuS) [1, 2] competition: a brute-
force enumeration of candidate programs [16], a stochastic
search [11], and an SMT solver-based synthesizer [5, 6].

We defined the HD benchmark suite, consisting of 15
problems from the “Hacker’s Delight” problem set [17], a
standard program synthesis benchmark. We combined these
15 problems with several relaxed correctness specifications.

We found that approximation does not make program
synthesis less tractable: the SyGuS solvers were able to
solve approximate and precise versions of these benchmarks
in similar time. In fact, we found that even though the
approximate versions allowed relaxed correctness, the SyGuS
solvers often returned exact solutions faster than exact solvers.
While surprising, we validated that this result was due to
interactions with the heuristics of the underlying solver, rather
than a fundamental result about approximate synthesis.

4. Real-World Approximate Programs
We defined the PARROT benchmark suite, consisting of seven
programs from the neural acceleration work of Esmaeilzadeh
et al. [4]. Unfortunately, SyGuS solvers were unable to solve
any of these approximate synthesis problems, timing out after
one hour of work. The PARROT problems are substantially
larger than the HD problems, and so the search space of
candidate programs is too large to easily explore.

To make approximate synthesis tractable for real problems,
we turned to sketch-based synthesis [13, 14], which is the
problem of completing a partial implementation—a sketch—
to satisfy a correctness specification. A sketch is a program
with missing expressions, called holes, to be discovered
by the synthesizer. The sketch restricts the search space of
candidate programs by conveying domain knowledge to the
synthesizer. Sketch-based synthesis is known in the synthesis
community to improve the scalability of program synthesis.

1 static int kx[3][3] =
2 {{ −1, −2, −1},
3 { 0, 0, 0},
4 { 1, 2, 1}};
5 int sobel x(int w[3][3]) {
6 int i, j, r = 0;
7 for (j = 0; j < 3; j++)
8 for (i = 0; i < 3; i++)
9 r += w[i][j] ∗ kx[j][i];

10 return r;
11 }

(a) sobelx reference implementation

1 ??op ∈ {+, −, <<}
2

3 int sobel x sk(int w[9]) {
4 int c0 = ??op(??var, ??var);
5 int c1 = ??op(??var, ??var);
6 int c2 = ??op(??var, ??var);
7 int c3 = ??op(??var, ??var);
8 int c4 = ??op(??var, ??var);
9 int c5 = ??op(??var, ??var);

10 return c5;
11 }

(b) sobelx RIS sketch

Figure 1. Reduced Instruction Set (RIS) sketch for the
sobelx problem.

Problem
RIS BDF PF

Speedup Error Speedup Error Speedup Error
ffts – – – – 11.4× 21.3%
fftc – – – – 12.0× 28.9%
dist3 – – 1.6× 14.9% – –
sobelx 10.6× 0% – – – –
sobely 10.7× 0% – – – –
inversek2j1 – – – – 34.8× 16.3%
inversek2j2 – – – – 10.0× 18.5%

Figure 2. Sketch-based synthesis successfully solves real-
world AppSyn problems.

We defined a class of sketches called reduced instruction
set (RIS) sketches. RIS sketches are SSA-form programs, in
which each assignment applies an unspecified operator to
unspecified operands, as in Figure 1. The operator holes ??op
are constrained to a reduced instruction set necessary to im-
plement the reference program (as determined automatically).
RIS sketches are parameterized by their length and by how
many additional operations are added to the reduced instruc-
tion set (which might allow novel approximations). We also
define bounded data-flow (BDF) sketches: RIS sketches that
restrict argument holes to only read from variables read by
that instruction in the reference implementation. Finally, we
define piecewise function (PF) sketches that approximate a
function by a piecewise combination of polynomials.

Figure 2 shows the results of using these sketches to
solve PARROT problems, with a correctness specification
that approximate outputs are within 50% of precise outputs.
We successfully solve all seven problems, discovering more
efficient programs with reasonable accuracies.

5. Conclusion and Future Work
Programming models for approximate computing require rea-
soning about delicate trade-offs between quality and accuracy.
Our results show that program synthesis is a promising tech-
nique to automatically explore this trade-off. In future work,
we intend to automate the solving process, by searching for
the optimal sketch for a given reference program. We also
intend to explore richer cost functions and optimization crite-
ria, motivated by recent work on synthesis with real-valued
optimization functions [3] and of probabilistic programs [9].

2 2015/5/28



References
[1] R. Alur, R. Bodik, G. Juniwal, M. M. K. Martin,

M. Raghothaman, S. A. Seshia, R. Singh, A. Solar-Lezama,
E. Torlak, and A. Udupa. Syntax-guided synthesis. In FMCAD,
2013.

[2] R. Alur, R. Bodik, E. Dallal, D. Fisman, P. Garg, G. Ju-
niwal, H. Kress-Gazit, P. Madhusudan, M. M. K. Martin,
M. Raghothaman, S. Saha, S. A. Seshia, R. Singh, A. Solar-
Lezama, E. Torlak, and A. Udupa. Syntax-guided synthesis.
In Marktoberdorf, 2014.

[3] S. Chaudhuri, M. Clochard, and A. Solar-Lezama. Bridg-
ing boolean and quantitative synthesis using smoothed proof
search. In POPL, 2014.

[4] H. Esmaeilzadeh, A. Sampson, L. Ceze, and D. Burger. Neural
acceleration for general-purpose approximate programs. In
MICRO, 2012.

[5] S. Gulwani, S. Jha, A. Tiwari, and R. Venkatesan. Synthesis of
loop-free programs. In PLDI, 2011.

[6] S. Jha, S. Gulwani, S. A. Seshia, and A. Tiwari. Oracle-guided
component-based program synthesis. In ICSE, 2010.

[7] L. Meyerovich. Parallel Layout Engines: Synthesis
and Optimization of Tree Traversals. PhD thesis,
EECS Department, University of California, Berkeley, Dec
2013. URL http://www.eecs.berkeley.edu/Pubs/

TechRpts/2013/EECS-2013-242.html.

[8] S. Misailovic, M. Carbin, S. Achour, Z. Qi, and M. C. Ri-
nard. Chisel: Reliability- and accuracy-aware optimization of
approximate computational kernels. In OOPSLA, 2014.

[9] A. V. Nori, S. Ozair, S. K. Rajamani, and D. Vijaykeerthy.
Efficient synthesis of probabilistic programs. In PLDI, 2015.

[10] P. M. Phothilimthana, T. Jelvis, R. Shah, N. Totla, S. Chasins,
and R. Bodik. Chlorophyll: Synthesis-aided compiler for low-
power spatial architectures. In PLDI, 2014.

[11] E. Schkufza, R. Sharma, and A. Aiken. Stochastic superopti-
mization. In ASPLOS, 2013.

[12] S. Sidiroglou, S. Misailovic, H. Hoffmann, and M. Rinard.
Managing performance vs. accuracy trade-offs with loop per-
foration. In FSE, 2011.

[13] A. Solar-Lezama, L. Tancau, R. Bodik, V. Saraswat, and
S. Seshia. Combinatorial sketching for finite programs. In
ASPLOS, 2006.

[14] A. Solar-Lezama, G. Arnold, L. Tancau, R. Bodik, V. Saraswat,
and S. Seshia. Sketching stencils. In PLDI, 2007.

[15] E. Torlak and R. Bodik. Growing solver-aided languages with
Rosette. In Onward!, 2013.

[16] A. Udupa, A. Raghavan, J. V. Deshmukh, S. Mador-Haim,
M. M. K. Martin, and R. Alur. Transit: Specifying protocols
with concolic snippets. In PLDI, 2013.

[17] H. S. Warren, Jr. Hacker’s Delight. Addison-Wesley, 2007.

[18] Z. Xu, S. Kamil, and A. Solar-Lezama. Msl: A synthesis
enabled language for distributed implementations. In Pro-
ceedings of the International Conference for High Perfor-
mance Computing, Networking, Storage and Analysis, SC
’14, pages 311–322, Piscataway, NJ, USA, 2014. IEEE Press.

ISBN 978-1-4799-5500-8. doi: 10.1109/SC.2014.31. URL
http://dx.doi.org/10.1109/SC.2014.31.

3 2015/5/28

http://www.eecs.berkeley.edu/Pubs/TechRpts/2013/EECS-2013-242.html
http://www.eecs.berkeley.edu/Pubs/TechRpts/2013/EECS-2013-242.html
http://dx.doi.org/10.1109/SC.2014.31

	Program Synthesis
	Approximate Program Synthesis
	Feasibility of Approximate Synthesis
	Real-World Approximate Programs
	Conclusion and Future Work

