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Abstract

We are at the threshold of an explosion in new data. Relax-
ation of the requirement of accurate execution provides us
an opportunity to deploy low-power, low-cost technology in
the processing of this vast data. In our prior work, we have
shown that “Relaxed” synchronization is a useful approxi-
mation technique that promises to provide rich rewards in
improved latency and reduced energy consumption without
unduly compromising the quality of results. From our work
on relaxed synchronization, we identify 3 factors, namely,
stability, redundancy, and feedback, that appear to be criti-
cal to successful use of approximate computing based on the
usage context.

1. Introduction

We are at the threshold of an explosion in new data, pro-
duced not only by large, powerful scientific and commer-
cial computers, but also by the billions of low-power de-
vices of various kinds. The traditional techniques of process-
ing such information by first storing them in databases and
then manipulating and serving them through large comput-
ers are becoming too expensive. The cost in acquiring and
running such machines can be contained by recognizing that
there is an exactness implied by traditional computing that
is not needed in the processing of most new types of data.
This relaxation of accuracy can help in the wider exploita-
tion of relatively more energy-efficient modes of comput-
ing like cluster computing. More importantly, this relaxation
of the requirement of accurate execution provides us an op-
portunity to deploy in the processing of this vast new data
the same low-power, low-cost technology that was used to
generate the data in the first place. Such energy-efficient cir-
cuits suffer from greater unreliability and variability in per-
formance when used in the high-efficiency mode, but these
problems can be addressed by changing the way we design
such systems, changing the nature of the algorithms for such
systems, and by modifying the expectation of the quality of
results produced by such systems. We call this the “approxi-
mate computing” paradigm.

There are two sources of inaccuracies in approximate
computing. The first arises from imperfect execution of an
algorithm. This can be due to problems with the design of
the algorithm or of the hardware, due to faults that occur af-
ter deployment of the hardware, due to the variability of op-
eration of circuits when pushed to their design limits, or due
to malicious attacks on systems. The second arises from in-

accuracy in the data stream itself because of missing data or
modified data, produced intentionally, as through data com-
pression, or unintentionally, as through faulty communica-
tion channels.

One of the primary goals of approximate computing is to
determine inaccuracies that are acceptable, hence requiring
no rectification, because the produced results are acceptable
albeit different from precise computation. In addition, for the
inaccuracies that are not acceptable, the goal of approximate
computing is to combat these sources of inaccuracies inex-
pensively and in an energy-efficient manner while produc-
ing results that may be different, yet acceptable. Computing
models that achieve this goal have to address both the detec-
tion and the correction of such inaccuracies. The detection
of such inaccuracies can be done either by the user observ-
ing and reacting to a wrong result as in media applications,
by the algorithm expecting a range of correct results as in
estimation techniques, or by the run-time monitoring of the
execution of the system. The correction of system behavior
can be done either by re-execution, by modification of code,
or by attempting a different approximation algorithm. Fu-
ture systems will need to combine all these techniques into
a single dynamically optimized system that employs feed-
back from the user to guide the high-level choice of energy-
efficient algorithms, and employs prediction based on past
experience to guide the low-level energy-efficient execution
of the system so as to guarantee the required precision (or
approximation) desired by the usage context.

Figure 1 shows the possible opportunities for approxi-
mate computing across the system stack with suggested ap-
proaches to achieve the same. We refer the readers to [1] for
a summary of prior work on approximate computing at dif-
ferent levels of the system stack.

In order to test our concepts on approximate computing
we performed a series of experiments on relaxing synchro-
nization in parallel applications [1]. Section 2 presents a
summary of this work. Our experiments point to factors that
help in the successful adoption of approximate computing in
general. These are listed in Section 3.

2. ‘“Relaxed” Synchronization

Synchronization overhead is often a major performance lim-
iting factor in parallel applications. In our prior work [1] we
proposed a methodology that can be used to reduce (and in
some cases completely eliminate) synchronization overhead.
The first step is to choose parallel code regions in the pro-
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Figure 2: Speedup of relaxed versus original versions of
Kmeans. The bars within a group represent the number of
threads used in the parallel execution.

gram that use synchronizations. For each parallel code re-
gion, the following four key steps are needed to succeed in
exploiting relaxed synchronization:

1. Choose relaxation points: Relaxing synchronization used
to ensure that threads use the most recent value of a
variable are excellent candidates.

2. Identify criteria that quantify the quality or acceptability
of the solution: Most applications have explicit accept-
ability criteria. For example, the convergence criteria in
an iteratively converging computation is typically an ac-
ceptability metric as well. All solutions that meet the cov-
ergence criteria are accepted as valid.

3. Restructure code to enable switching execution between
the original and/or relaxed version based on the usage
context.

4. Select profitable degree of relaxation via experimentation
or analysis: The most profitable degree of relaxation is
dependent on many factors, including the platform of
execution and the input data size. Hence the choice of
degree of relaxation is empirical; we have found that it
is useful to restructure the code so that this degree of
relaxation can be controlled via a parameter.

We have used this framework to experiment with several
benchmark parallel applicaitons [1]. As an illustration we
show in Figure 2 the results obtained for the Kmeans clus-
tering algorithm. Approximation through relaxed synchro-
nization on this algorithm improves performance up to 13x.

3. Lessons Learned

Relaxed synchronization, as we have demonstrated, is a use-
ful approximation technique that promises to provide rich re-
wards in improved latency and reduced energy consumption
without unduly compromising the quality of results. Obvi-
ously such approximation techniques cannot be employed
for all problems and it would be useful to know a priori
whether a certain combination of problem and solution tech-
nique would lend itself to approximate computing. From our
work on relaxed synchronization, we identify 3 factors that
appear to be critical to successful use of approximate com-
puting.

e Stability: Slowly changing values in computation allows
best exploitation of approximate computing. For exam-
ple, iteratively converging algorithms tend to slowly con-
verge to the eventual solution allowing ample opportuni-
ties to approximate values without affecting the quality
of the solution.

Redundancy: Approximate computing becomes useful
when the potentially incorrect path to a solution can be
replaced by an alternate path. For example, our relax-
and-check framework falls back to the fully synchronized
version if the quality of the results is not acceptable.

Feedback: In any computation, a sanity checker, de-
ployed either continuously or at appropriate points in
the execution, provides the ability to detect potentially
unacceptable results. Such checkers when deployed at a
high level, e.g. at the algorithmic or at the application
level, can handle divergences from expected values due
to both hardware and software errors. In our relax-and-
check framework, the convergence condition built into
the algorithm is used as the sanity checker which, if not
satisfied, prompts the algorithm to switch to the synchro-
nized version.

Interestingly, traditional computing does not depend on
any of these factors while the human brain relies heavily on
all these three factors. It is clear that if we wish to solve
problems that resemble those that a human brain is good at
solving, and with good energy efficiency, we have to move
away from traditional computing paradigms and into the
realm of approximate computing.
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