
iACT: A Software-Hardware Framework for
Understanding the Scope of Approximate Computing

Asit K. Mishra Rajkishore Barik Somnath Paul

Intel Labs

{asit.k.mishra, rajkishore.barik, somnath.paul}@intel.com

Abstract

Approximate computing has recently emerged as a paradigm for
enabling energy efficient software and hardware implementations
by exploiting the inherent resiliency in applications to imprecise-
ness in their underlying computations. Much of the previous work
in this area has demonstrated the potential for significant energy
and performance improvements, but these works largely consist of
ad hoc techniques that are applied to a small number of similar
applications. Mainstream adoption of approximate computing re-
quires a deeper understanding of the inherent application resilience
and the codesign hardware to go with the software. This dictates
tools and methods that can help programmers reason about the
scope and behavior of approximations in applications. To this end,
this paper discusses an open source toolkit, called iACT (Intel’s
Approximate Computing Toolkit) to analyze and study the scope of
approximations in applications. Our toolkit consists of a compiler,
runtime and a simulated hardware test bed. We discuss the design
of this toolkit and present examples of how to use this toolkit in
this paper. As an example on how to use this toolkit, we include
two different applications and analyze the scope of approximate
computing in these.

1. Introduction

Recently, approximate computing has emerged as a new design
approach that leverages inherent application resilience through
hardware optimizations that trade off output quality for improved
performance and energy efficiency. Inherent application resilience
refers to the property of an application to produce acceptable out-
puts despite some of its underlying computations being executed
incorrectly in the underlying hardware. Effectively, approximate
computing optimizations relax the traditional requirement of exact
(numerical or Boolean) equivalence between the specification and
implementation. This effectively leads to trading off accuracy for
better performance and energy efficiency and has turned out to be
an attractive option for many important and resource-hungry appli-
cations, including machine learning, image and video processing,
computer vision, probabilistic and statistical analytics, simulations,
big data analytics, etc.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

WACAS ’14, March 2, 2014, Salt Lake City, Utah, USA.
Copyright c© 2014 ACM 978-1-nnnn-nnnn-n/yy/mm. . . $15.00.
http://dx.doi.org/10.1145/nnnnnnn.nnnnnnn

Why do applications exhibit inherent resiliency? The inherent
resilience of the application classes mentioned above could be at-
tributed to: (i) Significant redundancy is present in large, real-world
data sets that these applications process and in many instances
(such as in image and video processing applications) the inputs
are drawn from the real world using sensors (such as camera), and
anytime inputs are drawn from real world they always come with a
share of noise which the applications know how to handle. (ii) Ap-
plication classes mentioned above, produce outputs which are even-
tually consumed by humans and we, humans, have our own per-
ceptual limitations. Further, in many of these applications, a range
of outputs are equivalent (i.e., no unique golden output exists), or
small deviations in the output cannot be perceived by users [9, 31].

Why study approximate computing now? The motivation for
studying approximate computing and designing hardware to relax
guarantees stems from two aspects: (i) Evolutionary: With transis-
tor scaling becoming less and less effective at improving system
energy efficiency and performance, we need avenues that provides
a path forward for the computer industry. Along side, devices are
becoming less and less reliable and designers are starting to operate
the devices at the limits of their reliability. As such, designers are
starting to seek alternative avenues in improving the die yield. In
such a scenario, approximate computing could be a good candidate
to improving the yield by hosting the resilient applications (or por-
tions of applications that are resilient) on to the unreliable portions
of the chip and the remaining portion of the application of the re-
liable portion of the chip. (ii) Many of the emerging and important
applications can be approximate: As mentioned above, many of the
emerging applications (targeted towards mobile and handheld com-
puting, and data analytics) are amenable to this class of computa-
tion, but are very resource hungry. Approximate computing could
help bring down the energy envelopes of these applications, make
the hardware they run have longer battery life (even, smaller battery
form factor) and improve the performance of these applications as
well.

Several recent efforts have explored approximate computing
both in software as well as hardware [1, 7, 19, 23, 29, 31, 33] with
encouraging results. Software schemes proposed in these works im-
prove performance by skipping computations or reducing the use of
expensive operations such as inter-thread synchronization, whereas
hardware techniques simplify or modify the design at various lev-
els of abstraction to introduce tradeoffs between output quality and
efficiency, such as operating modules at lower voltage or reduc-
ing the precision of computations. All these efforts have brought
forth the significant potential of approximate computing, and there
is a strong interest in its use with the growth in emerging appli-
cations that are amenable to this class of computations. However,
several critical challenges need to be addressed before approximate
computing can move from its infancy and research efforts confined
in academic labs to broader adoption by the industry. First, and

foremost, the amenability of various applications and their inher-
ent resilient properties need to be understood and quantified. Sec-
ond, both programmers and hardware designers require tools that
quantitatively evaluate the approximation amenability of a given
application. These two aspects necessitate the need of tools and
methods that can help programmers and designers reason about
the scope and behavior of approximations in applications and ef-
fectively evaluate various approximate computing techniques for a
given application, or a given technique across a wide range of ap-
plications.

To this end, this paper starts off with a taxonomy of related
terms in this field and then presents an open source toolkit to an-
alyze and study the scope of approximations in applications. Our
toolkit, called iACT (Intel’s Approximate Computing Toolkit), con-
sists of a compiler, a runtime and a simulated hardware test bed.
The compiler portion consists of a LLVM [20] based pragma anno-
tation framework that embeds in the binary of the compiled applica-
tion programmer provided hints for the hardware. Based on LLVM
and Clang, we present an example of a runtime framework that
handles approximate memoization during the application’s execu-
tion. A Pin [26] based framework handles approximation in hard-
ware. We discuss the design of this toolkit and present examples of
how to use this toolkit in this paper. As an example on how to use
this toolkit, we include two different applications and analyze the
scope of approximate computing in these. We believe that this open
source toolkit could provide a common collaborative framework for
the ongoing research in academia where researches could work on
these toolkit and contribute back to the development of this toolkit.
We believe this will greatly aid the larger community in adopting
approximate computing as an avenue for design optimization.

The rest of this paper is organized as follows - we present a
summary of related work and draw a taxonomy for this field in Sec-
tion 2. Then we present our toolkit design and provide a description
of it in Section 3 followed by how to use it and application analysis
using the toolkit in Section 4. We present our next steps and dis-
cuss some challenges in this field in Section 5 and finally conclude
in Section 6.

2. Prior work and taxonomy

There are various proposals from academia as well as industry
advocating trading of application output quality, QoS and perfor-
mance for energy efficiency. These approaches have been varied
and have come from several different computer science and electri-
cal engineering research communities. Below is a gist of the prior
works.
Architectural Approximate Computation Schemes: Tong et
al. [36] examine adapting the floating-point (FP) mantissa width
to suit the application requirements. Because FP computations im-
plicitly incorporate imprecision, coarsening the imprecision has a
mild effect on some applications. Similarly, work in [3] exploits FP
operation memoization (a scheme where instances of an already
executed operation are reused). Works in [15, 19, 32–34] argue
for using logic circuits that are amenable to voltage-overscaling
(lowering operating voltage) alongside units with strict guarantees.
Circuit Techniques Facilitating Approximate Computing: Prob-
abilistic CMOS [2, 7, 8, 14, 17, 18] is a similar concept from the
VLSI community that advocates codesign of the technology, ar-
chitecture, and application to produce approximate ASICs for par-
ticular soft applications. Research work in [10, 29] has looked at
building circuits and ASICs to handle approximate computing.
Application-Level Error Tolerance: Works in [11, 21–23, 37] fo-
cus on exploring the tolerance of selected applications to transient
faults. All these papers advocate that some parts of the application
(some memory regions, some instructions) are much more toler-

ant to errors in hardware than others and then relax the hardware
guarantees to error protection for these code segments.
Compiler Techniques: Language and compiler researchers have
explored software-only optimization that trade away strict correct-
ness guarantees. Rinard et al. [1, 28, 30] propose program/code
transformations such as “loop perforation”. Green [4] is a differ-
ent approach to imprecise computing that allows the programmer
to write several implementations of a single function: a precise one
and several of varying imperfect precision. A runtime system then
continuously monitors application QoS and dynamically adapts to
provide the target QoS value.
Language-Exposed Relaxations in Hardware: Some approaches
combine architecture-level accuracy loss with programming con-
structs for exploiting it. Relax [12] allows the programmer to an-
notate regions of code for which hardware error recovery mecha-
nisms could be turned off. The hardware only performs error detec-
tion and the programmer can choose how to handle hardware faults
if they occur. Flikker [25] focus on memory rather than logic: it
lets the programmer allocate some data in a failure-prone region
of main memory. The refresh rates of the main memory cells in
these regions are then reduced, saving power at the cost of occa-
sional bit-flips. Work in [35] proposes a parallel architecture that
uses language-level error bound expressions to map messages to
higher- or lower-reliability communication channels. EnerJ [31] is
an extension to Java that exposes hardware faults in a safe, princi-
pled manner. Simulation of a selectively reliable hardware, Truffle,
suggests that EnerJ programs can save large amounts of energy with
only slight sacrifices to quality of service [13].
Industry Effort on Approximate Computing: Intel recently pub-
lished a variable precision ALU component, called Minerva [16]
which is a FMA unit (O = A*B+C). Higher floating-point preci-
sion offer improved accuracy but come at the expense of perfor-
mance and energy efficiency. On the other hand variable-precision
floating-point circuits in Minerva provide run-time precision selec-
tion leading to accuracy trade-off at the benefits of energy savings.

2.1 Taxonomy

Since this field is relatively new and is starting to draw attention,
we present a taxonomy to the readers for a better understanding of
topics and terms related to this area.

Computing in hardware (and software) can be precise or impre-
cise (see Figure 1). With precise computing the hardware (and at
times the software) always provisions for unexpected errors; if er-
rors are introduced in the hardware, then the hardware corrects the
errors without letting the application programmer know about it.
For example, if a data bit gets corrupted during transmission over
the memory bus, then the hardware’s ECC mechanisms identify
and correct this error and the software or the user never knows that
such an error occurred in the first place.

Imprecise computing on the other hand refers to the fact that the
system (typically the hardware) does not produce the exact output
at all times. This technique of computing originated in the context
of the real-time computing [6, 24, 27]. The idea there was to design
tasks that always produce a valid result when the timing deadline is
reached - if the task completes before the deadline, then the result is
the precise value, else it is a valid but imprecise result. This reduces
timing errors in real time systems when certain tasks are unable to
meet the deadlines because of errors or resource constraints.

We classify imprecise computing into several classes - variable-
precision, soft, probabilistic, stochastic, approximate, quantum and
non-Boolean computing.

Variable-precision computing refers to the class of computing
where the working precision of the arithmetic supported by the
hardware can be dynamically and arbitrarily varied leading to pre-

Computation

Precise Imprecise

Variable-

precision
Soft Probabilistic Stochastic Approximate Quantum

Non-

Boolean

Figure 1. Taxonomy.

cision loss. This is mostly done to save energy while ensuring that
the error accumulated is within reasonable limits.

Soft computing is a term applied to the field in computer science
that is characterized by the use of inexact solutions to computa-
tionally hard tasks (such as the solution of NP-complete problems).
Neural networks, machine learning algorithms, fuzzy logic, genetic
algorithms, meta-heuristic intelligence (ant colony optimization,
swarm optimization, etc.), Bayesian networks, chaos theory, etc.
fall under this class of computation. Applications that are amenable
to soft computing are tolerant to imprecision, uncertainty, partial
truth, and approximations in results at the end (possibly at inter-
mediate steps as well). In effect, the role model for soft computing
is the human mind. The guiding principle of soft computing is -
exploit the tolerance for imprecision, uncertainty, partial truth, and
approximation to achieve tractability, robustness and low solution
cost.

Probabilistic computing was motivated by the increasing poten-
tial for errors in hardware as we move to smaller technology nodes.
The idea here is that certain applications (like Bayesian inference,
cellular automata, neural networks, hyper encryption [2]) are re-
silient to hardware errors and hence, not all the hardware errors
need to be caught/detected and corrected. The CMOS devices that
become susceptible to perturbations due to noise, soft-errors, vari-
ations or reliability are referred to as probabilistic CMOS (or PC-
MOS) and the computations done using circuits built out of these
devices are called probabilistic computations.

Stochastic computing is a some what general formulation of
the probabilistic computing paradigm. The idea here is to match
up the hardware error distribution with the statistical properties
of the application’s output to reason about how valid results can
be produced even in the presence of hardware errors. Stochastic
computing relies on exploiting the somewhat relaxed definition
of ”correctness” afforded by certain applications (RMS, graphics,
video, etc.). Stochastic computing views nanoscale circuit fabrics
as noisy communication channels and incorporates statistical be-
havioral models of the circuit fabric. In doing so, the aim is to de-
velop communications-inspired resilient design techniques based
on the well-established foundations of statistical estimation and
detection [33]. Specifically, stochastic computation advocates an
explicit characterization and exploitation of error statistics due to
nanoscale artifacts, as seen at the architectural/algorithmic/system
levels. The benefits of such a design philosophy are the gains in
robustness and energy-efficiency in presence of a extremely high-
degree of unreliability at the circuit fabric.

Approximate computing is a very generic formulation that is in-
clusive of all the above techniques in a cohesive manner. The idea

here is to provide programming language constructs that allow ap-
plication to express its tolerance to hardware errors or reduced re-
source computation or accuracy in computations, as well as how the
application algorithm can adapt to execute within variable amounts
of resources. This information can be used by the compiler (or run-
time) to perform probabilistic code transformations that might in-
troduce some impreciseness in the final output data. Also, this in-
formation is exposed to the hardware (possibly via native machine
instructions).

Overall, all the above classes of imprecise computing fall under
the over-arching category of reduced-resource computing - where
the actual computation or algorithm might vary depending on the
amount of resource available to perform the task. The resource can
be defined either in terms of physical units required to perform a
task, or time or energy. Either the application, or the hardware or
the compiler and the runtime is typically is made aware of reduction
is resources and the application eventually expects some level of
impreciseness in result.

The final two classes under imprecise computing are somewhat
different from the rest.

Quantum computing shares theoretical similarities with non-
deterministic and probabilistic computers, like the ability to be in
more than one state simultaneously.

Non-Boolean computing refers to the class of computing where
a single storage bit can correspond to more than 2 values at any
instant of time as opposed to binary computing where a bit can
only correspond to truth-values (0 or 1).

3. Intel’s Approximate Computing Toolkit

(iACT)

The iACT consists of (1) a compiler based static framework that
embeds in the binary the programmer annotated approximate com-
puting knobs, (2) a runtime framework for approximate memoiza-
tion and (3) a HW substrate (done through simulations) that exer-
cises the approximations. The key idea is when the programmer
writes a program, he/she annotates the approximation amenable
functions (code segments) with high-level pragmas and also pro-
vides a quality or checker function (the compiler or the adaptive
runtime layer can auto-generate the quality or checker function).
The high-level pragmas provide hints to the compiler and adap-
tive runtime system to perform approximation on the desired func-
tions until quality is met. The compiler performs static analysis
and then transforms the functions statically for approximation and
finally, embeds the programmer specified transformation informa-
tion (through annotations) in the application binary. When the hard-

Language pragmas

#pragma axc

#pragma axc_precision_reduce

#pragma axc memoize [(arg, err), !]

{out_vars}

Programmer provided per-function

checker functions

Semi-auto generated checker

functions

Static AxC transformation such as

precision reduction and bitwidth

Reduction

Application

level

Compiler level

Static adaptive AxC transformation

such as memoization, quality

assertion, machine learning

techniques for checker function

generation

Runtime

level

Precision reduction, hardware

memoization, noisy computation,

noisy network channels, noisy

memory modules

Hardware

level

Figure 2. Summary of the capabilities of iACT.

!

!!"#$%&'&()*'+,(-+.((/0+
+

1+/-"2&"+"#$%&'&()*'+34567894:6:58;(<=4*8++

,(-+4+)+>+5?+)+@+A?+)+>+)+B+:+8+C+

++++++++++*+>+,4#9+D8?+

E+
+

++
,.("=+,((4,.("=+#9+,.("=+D9+FG"-%-'=8+C+

+++G"-%-'=+>+#+B+D?+

+++++++-'=<-A+-'=?+

E+

+
!!"#$%&'&()*'+,(-+,<A$=)(A0+

+

1+"#$%/-"2&"+34567894:6:58;CHE+

,((4#9+D9+F-'=8?+

+

Figure 3. Language extensions via memoize pragma for
functions and loops. In this case, a runtime maintains a
global table with “in” and “out” parameters; during execu-
tion of the application, the runtime either skips the function
computation by reading the “out” values directly from the
table if the current function inputs are within the specified
range or computes the function and populates the table with
the “in” and “out” values if the table does not have such an
entry.

ware that is running the binary comes across these annotations,
the hardware executes the portion of the code with the right set
of approximation knobs while the runtime ensures that the even-
tual function output are within the programmer defined boundaries
(specified through the checker functions).

The checker functions could be programmer specified or could
also be semi-auto generated by the adaptive runtime layer. In the
later case, the program is run on a test-bed and for each of the
approximations carried out in the test-bed, the programmer (or the
end-user) specifies if the output is acceptable or not. The adaptive
runtime learns these approximation-output relationships using a
machine learning based framework and auto-generates the checker
function, which is then used from there on to guarantee that the
function output is within the programmer expected output range.
We call this eventual program a user and machine tuned program.
This aspect of our toolkit is currently work in progress.

Currently, our toolkit supports three kinds of transformations:
an automated variable precision reduction framework, a frame-
work for noisy ALU computation and an approximate memoization
framework. The compilation framework is implemented for C/C++
programs and is based on Clang and LLVM framework, and the
precision reduction and noisy computation frameworks are based
on a Pin tool. Overall, our toolkit enables an application program-
mer to perform and understand application-level error tolerance and
also understand how the underlying hardware could provide native
support for approximate computation.

Figure 2 shows a summary of the capabilities of iACT at each
layer starting from application level to hardware level. iACT is
hosted on https://github.com/IntelLabs/iACT and currently, the
compiler framework for pragma support, runtime framework for
approximate memoization support, and Pin based tools to simu-
late noisy hardware is released and hosted on the github repository.
With the pragma axc annotation to a C function declaration, the
Pin tools simulate a noisy hardware - noisy arithmetic instruc-
tions that operate on floating point values and noisy memory loads
and stores. The tools support several different parameterized noise
models - probability based, operand bit-position based, bit-width
based, etc. with knobs to extend the noise models. The pragma
axc precision reduce annotation for a function declaration down-
converts all the floating point values in the function to 16-bit width
precision. The idea here being that this pragma could later on sup-
port any arbitrary precision arithmetic and aid a programmer figure
out what precision levels are appropriate for his/her application.

The pragma axc memoize [(arg num, error percentage),...]{output var list}
annotation for a function at it’s call site invokes the runtime approx-
imate memoization framework. The [(arg num, error percentage),...]
annotation specifies error tolerance percentages for function argu-
ments. The output var list specifies the list of output arguments
through which the function returns values to the calling context. Us-
ing the above annotation values, the runtime memoization frame-
work creates a global table for each call-site and populates this
table during the function execution with new values of the input
arguments and their corresponding outputs. For subsequent invo-
cations of the same function, the runtime first tries to find if the
incoming values of the arguments are already in the table with their
specified error bounds in which case it does not execute the func-
tion but returns the results from the table (thus, approximating the
output values). Otherwise, the function is executed precisely and
new values are stored in the table. The global table size is kept rel-
atively small to reduce the cost of expensive search. Note that, the
runtime also checks the quality function before applying memoiza-
tion approximation. Figure 3 shows how memoization pragmas are
specified for loops and functions in our toolkit.

4. Applications

To help researchers in using iACT, we include two applications as
part of the first release - bodytracking application from the PAR-
SEC [5] benchmark suite and a Sobel filtering kernel. For this pa-
per, we also describe an in-house machine learning based classi-
fication algorithm and describe our experience in analysis of the
scope of approximate computing for this application. Since, body-
track and Sobel filter are released with the iACT, we do not discuss
them in this paper in detail and could answer any queries related to
these two applications on the repository discussion board. We do
describe in detail the classification algorithm and its amenability to
approximations.
Bodytracking application: Bodytrack is a computer vision appli-
cation which tracks a 3D pose of a marker-less human body with
multiple cameras through an image sequence. The underlying ker-
nel in this application is an annealed particle filter to track the pose
using edges and the foreground silhouette as image features, based
on a 10 segment 3D kinematic tree body model. We found body-
track application to be amenable to several different forms of noisy
computation and precision reduction schemes making it a good
candidate for approximate computing. Overall, with 16-bit preci-

Figure 4. Behavior of the classification workload as the probabil-
ity of bit flips vary.

sion, bodytrack application provides 22% dynamic energy reduc-
tion with less than 4% quality degradation compared to the 64-bit
(precise) execution.
Sobel filter: Sobel filter performs a 2-D spatial gradient measure-
ment on an image and identifies regions of high spatial frequency
that correspond to edges in the image. Sobel filtering is widely used
as a pre-processing step in image processing applications. Sobel fil-
ter uses a 3x3 operator and convolves pixels in the image with this
operator in a sliding window manner. For the iACT release, we
include a very simple implementation of this filtering application
in C and show how programmers should annotate the code for in-
voking the approximate memoization runtime framework. With the
approximate memoization scheme, we see dynamic energy savings
up to 22% with 10% of the image pixels deviating in value from
the execution without using any memoization framework averaged
across all the sample images in the repository.
Classification algorithm: Classification problems in machine
learning have the general characteristic of first acquiring labeled
training samples, which are provided as an input to the algo-
rithm which trains a learning model. Once the model is adequately
trained, it is expected to correctly classify any new sample which
is an input to this model. An in-house classification algorithm for
location identification was considered as a candidate for approx-
imate computing. During the training phase, each location was
uniquely represented through a set of samples for a given attribute.
This attribute can be image or any property which can be used to
differentiate one location from another. A variant of the k-nearest-
neighbor based classification algorithm was then used to classify
a new set of samples for an unknown location as one of the loca-
tions for which the model was trained. The distance metric used
in this algorithm is a combination of the Euclidean and Hamming
distances. The algorithm was implemented in C++ and a total of
3 functions were considered for approximation. These include:
(i) Function to calculate the Euclidean and Hamming distances
between two samples and then normalize the Euclidean with the
Hamming distance. This involves floating point division and multi-
plication operations which are approximated through the Pin tool.
Note in our application, the distances themselves are calculated
using integer operations. (ii) Function which aggregates the effect
of all samples and returns the distance from a given neighbor. This
involves floating point subtraction and compare operations. (iii)
Function which aggregates the distances from all neighbors and
classifies the unknown location based on a preset threshold and
distances from the k-best neighbors. It also involves floating point
comparison and multiplication operations.
Effect of random bit failures: Figure 4 shows the effect of random
bit failures on the location identification workload. Random bit fail-

ures modeled in the Pin tool are representative of the timing fail-
ures which can happen at low-voltage or high-frequency operation
modes. As observed from the figure, even at high probability of
these failures, the percentage output mismatch or percentage of in-
correct classification remains within tolerable limits (<5%). This
is primarily due to two reasons: (i) distances between samples go
through a max pooling operation before the k-best neighbors are
selected. This pooling operation helps to mask the relative variabil-
ity among the distances corrupted as a result of random bit failures.
(ii) The final matching criterion is based on a preset threshold. In
scenarios where the distance values are much greater or lesser than
the threshold limit, the final match/no-match decision remains un-
affected irrespective of the bit failures. However, beyond a certain
failure probability (0.6), the output accuracy suffers greatly, lead-
ing to an avalanche effect. This behavior has significant implication
on the energy-efficiency of the hardware platform running the loca-
tion identification workload. It shows that if the hardware platform
is originally designed to run at a maximum frequency (Fmax) at a
given voltage (V), then while running this application, it can poten-
tially run at F > Fmax, thereby improving performance or at V’ <
V, thus improving the power consumption.
Effect of lower precision: In our workload, the final distance (D) be-
tween two samples is first calculated by accumulating the distance
(d) of individual features of the two samples and then normalizing
it with the number of overlapping features (N) which matched be-
tween those two samples. For the case of image samples, features
can be specific objects identified from the image samples. The for-

mula used in the original workload is D =

√∑
N

i=1
d

Nα , where α is a
normalization factor. However, the summation of “d” quickly leads
to overflow of the half-precision limits. In a modified version of the

workload, we therefore implemented the formula to D =
∑

N

i=1

√

d

Nα

to keep the summation of the distances within half-precision lim-
its. This also required changing the initial thresholds for match/no-
match. After these two adjustments, the classification accuracy ex-
actly matched the accuracy for single-precision floating point rep-
resentation. This establishes that alternate approaches to workload
implementation can lead to improvement in error-tolerance for the
workload under consideration. Lower-precision floating point hard-
ware [16] can take advantage of the above optimizations to further
reduce the power consumption.

5. Future Work

We have released the first version of iACT with support for three
approximation knobs for now. We plan to continue adding features
to this repository based upon community feedback and requests.
Features like auto-generating a checker function based on machine
learning is currently our top priority. We also plan to actively
monitor the discussion boards in the repository and answer queries
related to our software release.

6. Conclusions

For approximate computing to become mainstream, architects and
designers need to solve many challenges, the first of which is the
scope and limits of savings using this scheme. In this quest, this
paper describes our open source toolkit, called iACT, which con-
sists of a compiler, a runtime and a simulated hardware platform
for testing out various approximation schemes in an application.
We believe, this is the first open source simulation test bed to ex-
periment approximate computing schemes (both in software and
hardware). Our goal behind releasing these tools is to foster a col-
laborative research effort across people in academia and industry
and help adoption of this topic of approximate computing main-
stream.

References

[1] A. Agarwal, M. Rinard, S. Sidiroglou, S. Misailovic, and H. Hoff-
mann. Using code perforation to improve performance, reduce energy
consumption, and respond to failures. Technical report, MIT, 2009.

[2] B. E. S. Akgul, L. N. Chakrapani, P. Korkmaz, and K. V. Palem.
Probabilistic cmos technology: A survey and future directions. In
VLSI-SoC, 2006.

[3] C. Alvarez, J. Corbal, and M. Valero. Fuzzy memoization for floating-
point multimedia applications. IEEE Trans. Comput., 54(7), 2005.

[4] W. Baek and T. M. Chilimbi. Green: a framework for supporting
energy-conscious programming usingcontrolled approximation. In
PLDI, 2010.

[5] C. Bienia, S. Kumar, J. P. Singh, and K. Li. The parsec benchmark
suite: Characterization and architectural implications. In Proceedings

of the 17th International Conference on Parallel Architectures and

Compilation Techniques, PACT ’08, pages 72–81. ACM, 2008. ISBN
978-1-60558-282-5.

[6] L. Budin, D. Jakobovic, and M. Golub. Genetic algorithms in real-
time imprecise computing. In Industrial Electronics, 1999. ISIE ’99.

Proceedings of the IEEE International Symposium on, pages 84 –89
vol.1, 1999.

[7] L. N. Chakrapani, B. E. S. Akgul, S. Cheemalavagu, P. Korkmaz,
K. V. Palem, and B. Seshasayee. Ultra-efficient (embedded) soc
architectures based on probabilistic cmos (pcmos) technology. In
Proceedings of the conference on Design, automation and test in

Europe: Proceedings, DATE ’06, 2006.

[8] L. N. Chakrapani, P. Korkmaz, B. E. S. Akgul, and K. V. Palem.
Probabilistic system-on-a-chip architectures. ACM Trans. Des. Autom.

Electron. Syst., 12(3), 2008.

[9] V. Chippa, S. Chakradhar, K. Roy, and A. Raghunathan. Analysis
and characterization of inherent application resilience for approximate
computing. In Design Automation Conference (DAC), 2013 50th ACM

/ EDAC / IEEE, pages 1–9, 2013.

[10] V. K. Chippa, D. Mohapatra, A. Raghunathan, K. Roy, and S. T.
Chakradhar. Scalable effort hardware design: exploiting algorithmic
resilience for energy efficiency. In DAC, 2010.

[11] M. de Kruijf and K. Sankaralingam. Exploring the synergy of emerg-
ing workloads and silicon reliability trends. In SELSE, 2009.

[12] M. de Kruijf, S. Nomura, and K. Sankaralingam. Relax: an architec-
tural framework for software recovery of hardware faults. In ISCA,
2010.

[13] H. Esmaeilzadeh, A. Sampson, L. Ceze, and D. Burger. Architecture
support for disciplined approximate programming. In ASPLOS, 2012.

[14] J. George, B. Marr, B. E. S. Akgul, and K. V. Palem. Probabilistic
arithmetic and energy efficient embedded signal processing. In Pro-

ceedings of the 2006 international conference on Compilers, architec-

ture and synthesis for embedded systems, CASES ’06, 2006.

[15] A. Kahng, S. Kang, R. Kumar, and J. Sartori. Designing a processor
from the ground up to allow voltage/reliability tradeoffs. In HPCA,
2010.

[16] H. Kaul, M. Anders, S. Mathew, S. Hsu, A. Agarwal, F. Sheikh, R. Kr-
ishnamurthy, and S. Borkar. A 1.45ghz 52-to-162gflops/w variable-
precision floating-point fused multiply-add unit with certainty track-
ing in 32nm cmos. In ISSCC, 2012.

[17] P. Korkmaz, B. E. S. Akgul, and K. V. Palem. Energy, performance,
and probability tradeoffs for energy-efficient probabilistic cmos cir-
cuits. IEEE Trans. on Circuits and Systems, 55-I(8), 2008.

[18] P. Korkrnaz, B. E. S. Akgul, and K. V. Palem. Ultra-low energy
computing with noise: Energy-performance-probability trade-offs. In

Proceedings of the IEEE Computer Society Annual Symposium on

Emerging VLSI Technologies and Architectures, ISVLSI ’06, 2006.

[19] R. Kumar. Computing with stochastic processors: revisiting the cor-
rectness contract between software and hardware. In Proceedings of

the 16th ACM/IEEE international symposium on Low power electron-

ics and design, ISLPED ’10, 2010.

[20] C. Lattner and V. Adve. LLVM: A Compilation Framework for
Lifelong Program Analysis & Transformation. In Proceedings of the

2004 International Symposium on Code Generation and Optimization

(CGO’04), Palo Alto, California, Mar 2004.

[21] X. Li and D. Yeung. Exploiting soft computing for increased fault
tolerance. In ASGI, 2006.

[22] X. Li and D. Yeung. Application-level correctness and its impact on
fault tolerance. In HPCA, 2007.

[23] X. Li and D. Yeung. Exploiting application-level correctness for low-
cost fault tolerance. Journal of Instruction-Level Parallelism, 2008.

[24] J. Liu, W.-K. Shih, K.-J. Lin, R. Bettati, and J.-Y. Chung. Imprecise
computations. Proceedings of the IEEE, 82(1):83 –94, jan 1994.

[25] S. Liu, K. Pattabiraman, T. Moscibroda, and B. G. Zorn. Flikker: sav-
ing dram refresh-power through critical data partitioning. In Proceed-

ings of the sixteenth international conference on Architectural sup-

port for programming languages and operating systems, ASPLOS ’11,
2011.

[26] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wal-
lace, V. J. Reddi, and K. Hazelwood. Pin: Building customized pro-
gram analysis tools with dynamic instrumentation. In Proceedings

of the 2005 ACM SIGPLAN Conference on Programming Language

Design and Implementation, PLDI ’05, pages 190–200. ACM, 2005.
ISBN 1-59593-056-6.

[27] H. R. Mahdiani, A. Ahmadi, S. M. Fakhraie, and C. Lucas. Bio-
inspired imprecise computational blocks for efficient vlsi implemen-
tation of soft-computing applications. Trans. Cir. Sys. Part I, 57(4):
850–862, 2010. ISSN 1549-8328.

[28] S. Misailovic, S. Sidiroglou, H. Hoffman, and M. Rinard. Quality of
service profiling. In ICSE, 2010.

[29] D. Mohapatra, V. K. Chippa, A. Raghunathan, and K. Roy. Design of
voltage-scalable meta-functions for approximate computing. In DATE,
2011.

[30] M. Rinard, H. Hoffmann, S. Misailovic, and S. Sidiroglou. Patterns
and statistical analysis for understanding reduced resource computing.
In Onward!, 2010.

[31] A. Sampson, W. Dietl, E. Fortuna, D. Gnanapragasam, L. Ceze, and
D. Grossman. Enerj: approximate data types for safe and general low-
power computation. In PLDI, 2011.

[32] J. Sartori, J. Sloan, and R. Kumar. Stochastic computing: embracing
errors in architecture and design of processors and applications. In
CASES, 2011.

[33] N. R. Shanbhag, R. A. Abdallah, R. Kumar, and D. L. Jones. Stochas-
tic computation. In DAC, 2010.

[34] J. Sloan, J. Sartori, and R. Kumar. On software design for stochastic
processors. In Proceedings of the 49th Annual Design Automation

Conference, DAC ’12, 2012.

[35] P. Stanley-Marbell and D. Marculescu. A programming model and
language implementation for concurrent failure-prone hardware. In
PMUP, 2006.

[36] J. Y. F. Tong, D. Nagle, and R. A. Rutenbar. Reducing power by
optimizing the necessary precision/range of floating-point arithmetic.
IEEE Trans. VLSI Syst., 8(3), 2000.

[37] V. Wong and M. Horowitz. Soft error resilience of probabilistic
inference applications. In SELSE, 2006.

