
Synthesis of Randomized Accuracy-Aware Map-Fold Programs

Sasa Misailovic Martin Rinard
MIT CSAIL

misailo@csail.mit.edu rinard@csail.mit.edu

Abstract
We present Syndy, a technique for automatically synthe-
sizing randomized map/fold computations that trade accu-
racy for performance. Given a specification of a fully accu-
rate computation, Syndy generates approximate implemen-
tations of map and fold tasks, explores the space of approx-
imate computations that these approximations induce, and
derives an accuracy versus performance tradeoff curve that
characterizes this space. Each point on the tradeoff curve is
associated with an approximate program configuration that
satisfies the probabilistic error and time bounds of that point.

1. Introduction
Many computations exhibit inherent tradeoffs between the
accuracy of the results they produce and the time required
to produce these results. Examples include audio and video
processing applications, numerical computations, machine
learning, and search applications. A key aspect in tuning
these applications is finding alternative implementations of
the program’s subcomputations and configurations of these
subcomputations that yield profitable tradeoffs between ac-
curacy and performance.

Researchers have previously proposed several language-
based techniques for navigating the tradeoff space and iden-
tifying or synthesizing alternative versions of subcomputa-
tions that help deliver desired tradeoffs. Many of these ap-
proaches are empirical in nature – to find profitable tradeoffs
they execute programs on a set of representative training in-
puts and use this information to make decisions when faced
with (previously unseen) production inputs [1, 2, 11, 14, 16,
17, 19]. In contrast to these dynamic approaches, static tech-
niques [5, 8, 13, 21] allow a user to specify the properties
of program inputs (e.g., specific ranges or probability distri-
butions of inputs) and computations (e.g., continuity), which
can be used to guide the optimization of the program. Out of
these static approaches, only the analysis presented in [21] is
used to reason about accuracy versus performance tradeoffs.
Syndy. This paper presents Syndy, a technique for accuracy-
aware optimization of approximate map-fold computations.
Syndy takes as input a program that implements a fully ac-
curate map-fold computation, a set of intervals of the inputs
of this computation, and a set of alternative implementa-
tions of the program’s subcomputations. Syndy’s output is a

transformed, randomized program that can execute at a num-
ber of points in the underlying accuracy versus performance
tradeoff space. This tradeoff space is induced by the trans-
formations – subcomputation substitution and sampling of
operands of fold operators – that Syndy applies on the orig-
inal program.

Syndy uses an optimization algorithm we presented pre-
viously in [21] to explore the tradeoff space and construct an
optimal tradeoff curve of the approximate program. This
optimization algorithm represents map-fold programs as
graphs in the abstract model of computation defined in [21].
The algorithm then constructs the tradeoff curve by defining
and solving mathematical optimization problems that char-
acterize the program’s expected execution time and expected
absolute error. Each point on the tradeoff curve contains a
set of randomized program configurations that deliver the
specified accuracy/performance tradeoff.

Contributions. This paper presents a programming lan-
guage for map-fold computations and an optimization al-
gorithm that operates on programs written in this language.
Specifically, in comparison with the previous research [21],
this paper makes the following contributions:

• Language. It presents a language for expressing map-
fold computations ([21], in contrast, worked with an ab-
stract model of computation based on graphs).
• Synthesis of Alternate Computations. It presents pro-

gram transformations within the language of map-fold
computations that induce the underlying accuracy versus
performance tradeoff space ([21], in contrast, worked di-
rectly on the graphs from the abstract model of computa-
tion).
• Mapping. It presents a mapping from the language of

map-fold computations to the abstract model of compu-
tation from [21]. This mapping enables the use of the op-
timization framework to find optimal tradeoffs for map-
fold programs.

2. Example
Figure 1 presents an example map-fold program. The pro-
gram takes as input features of images (such as edges of ob-
jects in the image and the foreground/background data) and
a set of models that represent the position of a person in the

function ImageEdge(image, model);
function ImageInside(image, model);
function Exp(val);
function Max(val1, val2);

function Score(image, model) :=
Exp(-1*((ImageEdge(image, model)
+ ImageInside(image, model)))

program (images, models) :=
fold(0, Max,
map (Score,
zip(images, models)))

Figure 1: Example Program
o

SpecF(ImageEdge) := (
{ (IEdge, 0,Te0), (IEdge1, Ee1,Te1),
(IEdge2, Ee2,Te2), (IEdge3, Ee3,Te3)
}, (NA,NA))

SpecF(ImageInside) := (
{ (IInside, 0,Ti0), (IInside1, Ei1,Ti1),
(IInside2, Ei2,Ti2), (IInside3, Ei3,Ti3)
}, (NA,NA))

SpecF(Exp) := ({ (Exp, 0,Texp) }, 1)
SpecF(Max) := ({ (Max, 0,Tmax) }, (1,1))

SpecI(images) := (400)
SpecI(models) := (400)

Figure 2: Function And Input Specifications

image. For each model the program computes a score that
quantifies how well the model represents the person’s po-
sition. The program returns the maximum computed score.
This computation was derived from a part of the Bodytrack
motion tracking application [4].

Functions. Syndy allows specifying two kinds of func-
tions – primitive and composite. Primitive functions are de-
fined in an external programming language and can use ar-
bitrary complex language constructs. Syndy treats the prim-
itive functions as black box computation. Composite func-
tions are defined within Syndy’s language. The body of a
composite function is a Syndy expression. Composite func-
tions can call the primitive functions and and operate on their
results. Both primitive and composite functions produce nu-
merical results.

The functions ImageEdge and ImageInside are primitive.
These functions take two input parameters, image (image
pixel information) and model (the model of the person’s lo-
cation), and produce numerical values as the outputs. The
function ImageEdge compares the prediction of the person’s
location from the model with the sharpness of image object
edges. The function ImageInside compares the body position
predicted by the model with the foreground/background sur-
faces from the image. The result of each function is a value
between 0 and 1.

The function Score is composite – it computes the arith-
metic expression that calls three primitive functions, Exp (ex-
ponentiation), ImageEdge, and ImageInside. Score produces a
result between 0 and 1. Higher value of the result indicates
that the model better matches the image data.

Program Inputs. The program takes as input the list con-
taining pointers to the raw image (images) and the list of
models (models). Both lists contain structurally complex data
structures. The map-fold computation operates on numeri-
cal data and the only operation it supports for complex data
structures is passing them to primitive functions.

Main Computation. The computation uses the helper zip
operator to combine the two input lists and construct a list of
pairs of the images and models. This list is passed as input
of the map operator. The map operator applies the function
Score to each element of the input list. Since each element of
the input list is a pair of values, the map operator unpacks the
pair elements and passes them as arguments of the function

Score. The map operator uses a lazy evaluation strategy: its
output list contains the expression terms that evaluate to
the score of each input parameter. These expressions are
evaluated to their numerical values only when required by
the subsequent computation, such as fold operators.

The fold operator computes the maximum value of the
scores of all models in the input list using the built-in Max
function. Since the input list of the fold operator contains
the expressions that compute scores, these expressions are
evaluated before executing the Max operation. Max then per-
forms comparisons on numerical values. The result of the
fold operator is the maximum computed score; this is also
the result of the program.

2.1 Approximating Computations
This computation has several opportunities for trading accu-
racy for additional performance. First, the functions ImageEdge
and ImageInside in the fully accurate implementation com-
pare all pixels of the input image with the correspond-
ing model location. Approximate implementations of these
functions can sample only a subset of pixels when comput-
ing the image/model difference. Second, the maximization
fold operator may skip some of its inputs, effectively search-
ing for the maximum score of only a subset of models. If the
fold operator does not aggregate scores of some models, the
previous map operator’s computation for these models can
also be skipped. Syndy uses primitive functions and input
specifications to and exploit the approximation opportuni-
ties and generate alternative program implementations.

Accuracy/Performance Specifications. The developer
provides specifications of accuracy and performance of al-
ternative function implementations. Figure 2 presents the
specification of the example functions. The function SpecF
returns the specification for each function. The first element
of the specification is a set of alternative function implemen-
tation specifications. Each alternative implementation speci-
fication contains the name of function, the expected absolute
error incurred by the execution of this implementation, and
the expected execution time.

The function ImageEdge has four implementations: the
original implementation (denoted as IEdge) does not incur
any error, and it executes in time Te0. The other three im-
plementations are approximate; each of these approximate

n ∈ Numeric
o ∈ Opaque
x ∈ Vars
a ∈ ListVars
p ∈ [0, 1]

D ∈ Decl → f (x1, . . . , xn) := e |
f (x1, . . . , xn);

L ∈ LExp → a | [t1, . . . , tk] | map(f ,L) |
[t〈x〉 : x in 1 : n] | zip(L1, L2)

t → ē | (ē, t)

e ∈ Exp → x | e1 op e2 | e1 p⊕ e2 |

let x = e1 in e2 |

f (e1, . . . , ek) | ē
ē → v | fold(n, f ,L)
v → n | o

P ∈ Prog → D∗ program(a∗) := [ē | L]

Figure 3: Syndy’s Target Language Syntax

implementations performs a regular sampling of the image
pixels. The error that the approximate implementations in-
cur is greater than 0, but their execution time is smaller. Both
error and time specifications are numerical constants – for
instance, they may have the following values: (IEdge, 0.000,
0.174), (IEdge1, 0.004, 0.097), (IEdge2, 0.012, 0.059) and
(IEdge3, 0.016, 0.051). The specification for ImageInside is
similar. The functions Exp and Max have only a single, fully
accurate implementation.

The second part of the accuracy/performance specifica-
tion of the function is the sensitivity of the function’s result
to the changes in each of its numerical input parameters.1

Consider the function Max. Its sensitivity vector has two el-
ements (since the function has two parameters). Both sensi-
tivity coefficients are 1, which indicates that the function Max
does not amplify the error of its arguments. Therefore, the
noise of the output of the maximum operation is proportional
to the noise introduced in each of the function’s arguments.
The developer has specified that the sensitivity of the func-
tion Exp is 1. For this the developer uses the additional infor-
mation that the functions ImageEdge and ImageInside produce
a result between 0 and 1. Finally, the functions ImageEdge and
ImageInside take as input complex data structures. Since the
sensitivity is defined only for numerical parameters, the de-
veloper uses the keyword NA to denote that the sensitivity
information is not applicable for these parameters.

Input Property Specification. The function SpecI speci-
fies the properties of the inputs of the computation, such as
the size of the input lists and the intervals of the input values
(if applicable). The specification in Figure 2 specifies that
the lists images and models have 400 elements each. For lists
of numerical data, a user can also specify the intervals of the
inputs. But, as the input lists in the example contain complex
data structures, this part of the specification is not applicable.

3. Language
Figure 3 presents the syntax of the language of map/fold
computations. A program is a set of function declarations
and definitions and a program expression that consists of
map and fold operators.
Data Types. The program operates on three kinds of in-
puts: 1) numerical values, 2) opaque values, which may be

1 Specifically, the sensitivity coefficients are Lipschitz constants of a func-
tion. For instance, for a function with one argument, S is a Lipschitz con-
stant if ∀x . | f (x + δx) − f (x)| ≤ S · |δx|. The definition of sensitivity can
also be restricted for x that belongs to a closed subinterval of numbers.

of an unspecified complex data type, but they can only be
passed as arguments and processed by primitive functions,
and 3) lists of numerical or opaque elements, which have a
finite size known at the analysis time.

Probabilistic Choice Operation. The language supports
probabilistic choice operator p⊕ , which computes the result
of the expression e1 with probability p; it computes the result
of the expression e2 with probability 1 − p. The choice is
controlled by the numerical constant p ∈ [0, 1].

Arithmetic Operations. The language supports the stan-
dard arithmetic operations, including addition, subtraction,
and multiplication.

Tuples. The language defines tuples as an auxiliary data
structure that allows the developer to use functions with
multiple arguments within the map operator. It also defines
the auxiliary zip operator, which produces a list of pairs
from two lists of the same size. We define an additional
syntax construct (ē1, ē2, . . . , ēn) to succinctly represent the
tuple (ē1, (ē2, . . . , ēn)) and zipn(L1, L2, . . . , Ln) to represent
zip(L1, zip(L2, . . . , Ln)).

Map Operator. A map operator takes as input a function
f and a list of inputs. It applies the function f independently
on each element of the input list L to produce the list of
outputs. An input list of a map operator is either a program
input or an enumerated list of the results of the previous
subcomputations, [t1, . . . , tn].
We define a parameterized enumerated list, an additional
language construct [t〈x〉 : x in 1 : n], to succinctly represent
the enumerated list [t′1, . . . , t

′
n], in which all free occurrences

of the variable x in t′i are substituted by a constant i.

Fold Operator. A fold operator takes as input 1) a start-
ing numerical value n, 1) a function f , which takes as input
a temporary value of the accumulator and a single element
from the list and produces the results of aggregation, and 3)
a list of numerical inputs. In each step, the function f reads
a single input from the list and computes the intermediate
aggregate value. The output of the fold operator is a single
numerical value that aggregates the contributions of all ele-
ments of the input list.

Well-Formed Program. The root expression of a well-
formed program is a map or a fold operator. The program
produces a numerical value. All tuples within an enumerated
list in a well-formed program have the same number of
elements and all lists referenced by a zip operator have the
same length.

3.1 Language Semantics
We note several points that have influenced the design of the
language:

• Probabilistic Randomized Execution. The language sup-
ports a probabilistic choice operator, p⊕ , which executes
one of its argument expressions. We use this operator as
a foundation for expressing randomized transformations
– function implementation substitution and fold operator
sampling – within the language.
• Lazy Evaluation of Map Operators. To support sampling

of fold operators, the semantics of the language delays
the execution of the computation of the map operators
until their results are needed. Therefore, if some of the
results of the map operator are not used by the subsequent
fold computation, they are not computed.
• Isolation of External Computation. To support a broader

set of computations, the language enables calling an ar-
bitrary complex computation (written in an external pro-
gramming language) that operates on individual pieces
of data. However, the external computation does not have
visible side effects; it only affects the program through its
return value.

Transition Relation. We define the big step operational
semantics for the map-fold computations. We present the
details of the semantics in the extended technical report [12].

We define the probabilistic big-step evaluation relation
E

p
=⇒ v, which states that the expression E evaluates in one

or multiple steps to the final canonical expression v with
probability p. A canonical expression v can be a numerical
or opaque value, a tuple of values, or a list of expressions.

Expected Value of Expressions. We are specifically inter-
ested in the case when an expression e evaluates to a numeri-
cal value n: e

p
=⇒ n. To define the probability distribution of

the results produced by the map-fold computation, we first
define the set of final values and probabilities to which a
closed expression term evaluates, K(e) = {(n, p) : e

p
=⇒ n}.

The induced probability mass function is then PK(e)(n) = p.
Note that the distribution is discrete under the condition that
the set Numeric and the set of the opaque values are count-
able. We define the expected value of a numerical expression
e as E[e] =

∑
(n,p)∈K(e)

p · n. It is the weighted sum of all the

values that the expression can evaluate to.

Computation Error. The expectation of an expression
serves as a basis for defining the error functions that rep-
resent the expected difference between the results of the
original and transformed expressions. The error functions,
computed for each transformation we propose, are later re-
lated to the error functions used in the optimization algo-
rithm from [21] (see [12, Section 4]).

The error of an alternative expression ê is an expected
absolute difference, Err(e, ê) := E[|e − ê|], for all inputs of

Map/Fold
Program

Alternate Function
Specifications

Translation to
Accuracy-aware model

Optimal Configuration
Search

Execution
Configuration Selection

Approximate
 Program Synthesis

Configurable
approximate
program

Program
Model

Tradeoff
Curve

Figure 4: Synthesis Framework Overview

the expressions e and â that fall within the ranges specified
by the user. As a special case, the expected absolute error in
the specification of the primitive function f with alternative
implementation f ′ is by definition E f ′ := E[| f − f̂ ′|].
The error of the alternative result of fold operators (except
for maximization/minimization) is defined the same way.
The error function of two numerical lists L and L̂ (which
are typically the results of map operators) is defined as
the maximum absolute error of its elements, Err(L, L̂) :=
maxi(E[|Li − L̂i|]).

4. Accuracy-Aware Transformations
Figure 4 presents an overview of the framework that gener-
ates approximate map-fold programs. The framework takes
as input the original map-fold computation and the function
and input specifications. The framework consists of 1) the
program synthesis component, which constructs an approxi-
mate configurable program from the original one, and 2) the
optimal configuration search component, which computes
configurations that deliver optimal tradeoffs between accu-
racy and performance.

Approximate Program Synthesis. The semantics of the
Syndy’s language of map-fold computations enables using
the probabilistic choice expression to implement the choice
between multiple function implementations and sampling of
inputs of fold operations. The probabilistic choice expres-
sion, e1 q⊕ e2, is controlled by the configuration variable q:
the expression e1 is executed with probability q and the ex-
pression e2 is executed with probability 1 − q. The value of
q is obtained from the concrete configuration vector and set
at the beginning of the program’s execution.

To synthesize the body of approximate composite func-
tions, Syndy first searches for the calls to primitive func-
tions that can be approximated – these are the functions
for which the developer has specified alternative implemen-
tations in the accuracy specification. Syndy replaces each
such call with an expression that consists of probabilistic
choice operators between the implementations of the primi-
tive function.

ImageEdge’(image, model) := IEdge(image, model) qe1⊕ IEdge1(image, model) qe2⊕

IEdge2(image, model) qe3⊕ IEdge3(image, model)

ImageInside’(image, model) := IInside(image, model) qi1⊕ IInside1(image, model) qi2⊕

IInside2(image, model) qi3⊕ IInside3(image, model)

Score’(image, model) := Exp(-1*(ImageEdge’(image, model) + ImageInside’(image, model))).

Figure 5: Transformed Score Functions

Figure 5 presents the configurable implementation of the
function Score. This alternative computation randomly calls
the original or approximate implementations of the functions
ImageEdge and ImageInside. For clarity, we extracted the prob-
abilistic choice expressions to auxiliary functions ImageEdge’
and ImageInside’. Probabilistic choice operations execute
from left to right. The variables qe1, qe2, qe3 and qi1, qi2, qi3
control the execution of the function Score’. Syndy trans-
forms the map operator to call the function Score’ instead of
the original function Score.

Syndy similarly transforms the maximization fold opera-
tor. The function Max(a, b), which computes the maximum
between the temporary aggregation variable a (which con-
tains the maximum value seen so far) and the new input b, is
replaced with the function that skips computing the input b
with probability 1 − qm:

Max’(a,b) := Max(a,b) qm ⊕ a.

Therefore, the final approximate configurable program
that Syndy generates is:

program (images, models) :=
fold(0, Max’, map(Score’, zip(images, models)))

The variables qe1, qe2, qe3, qi1, qi2, qi3, and qm represent
the configuration of the synthesized approximate program.
This program can execute at many points in the tradeoff

space by selecting the values of the configuration variables.
We next present how to compute the values of the configu-
rations parameters that deliver profitable tradeoffs.

5. Optimal Configuration Synthesis
To synthesize the configurations of the approximate map-
fold program, Syndy 1) translates the map-fold computa-
tion into an equivalent graph model from the accuracy-aware
model of computation and 2) runs the optimization algo-
rithm from [21] on this graph model to obtain the program
configurations.
Accuracy-aware Model of Computation. The accuracy-
aware model of computation presented in [21] is a tree of
computation and reduction nodes. A computation node rep-
resents the computation that executes independently on m
inputs in parallel. The number of inputs m represents mul-
tiplicity of the node. The computation performed on each
input is represented as a dataflow directed acyclic graph,
where each node represents a computation (called function
nodes), and each edge between two nodes represents a data
flow between the nodes. A reduction node represents aggre-
gate operations (summation, averaging, minimization, and
maximization) on m inputs.

Translation to Accuracy-aware Model. Syndy trans-
lates the map-fold program to a tree of computation and
reduction nodes. The functions with alternative implementa-
tions in map-fold programs are translated to function nodes.
The map operators are translated to computation nodes. The
fold operators with appropriate function (summation, aver-
aging, minimization, or maximization) are translated to the
corresponding reduction nodes. The translation component
also represents each alternate synthesized computation as a
transformation within the accuracy-aware model. We present
the details of the translation in [21, Sections 4 and 5].

Figure 6 presents the generated computation model for
the example program. The map operator that calls the func-
tion Score is translated to a computation node. The body of
the computation node is the graph that represents the data
flow within the function Score. The multiplicity of the com-
putation node is equal to the number of elements of the map
operator specified by the input specification (400). The calls
to the primitive functions Exp, ImageEdge, and ImageInside are
translated to function nodes. The functions ImageEdge and
ImageInside have alternative implementations – the model
uses the accuracy/performance specification from Figure 2.
The fold operator that performs maximization is translated
to the maximization reduction node.

ImageEdge

Exp

ImageInside

400

max

1

Figure 6: Accuracy-aware Model of the Example Program

Optimal Configuration Search Algorithm. The configu-
ration optimization algorithm uses the graph model to search
the tradeoff space induced by the program configurations.
The optimization algorithm produces a (1+ε)-optimal accu-
racy/performance tradeoff curve [21]. The parameter ε is a
small constant that specifies the relaxation of the optimality
of the tradeoff curve.

Each point on the generated tradeoff curve contains 1)
the upper bound on the expected absolute error, 2) the upper
bound on the execution time, and 3) the configuration of the
transformed program that delivers the specified tradeoff. Fig-
ure 7 presents the optimal tradeoff curve between the error
and the execution time that Syndy produces for the example
computation. The execution time is normalized to represent
the fraction of the time of the fully accurate program.

Figure 7: Tradeoff Curve of the Example Program

5.1 Execution Configuration Selection
At the start of the execution of the synthesized randomized
program, the runtime system selects the program’s configu-
ration based on the user-provided error tolerance bound ∆.
The program’s runtime module reads the concrete configu-
ration that guarantees that the execution error is smaller than
∆ from the tradeoff curve. The runtime assigns the values
from the concrete configuration to the configuration variable
of the approximate program.

If the user of the example computation selects tolerance
bound ∆ = 0.2, the runtime will select the configuration
from the point (1) in Figure 7. This configuration executes
in time at most 55% of the execution time of the original
(non-approximate) program. The runtime system replaces
each configuration parameter q with the corresponding nu-
merical value from the obtained configuration vector. Then
the executions of such program are guaranteed to produce
the results whose errors are bounded by ∆ in expectation.

6. Related Work
Quantitative Program Synthesis. Researchers have re-
cently explored numerical optimization techniques for gen-
eration of computations that satisfy quantitative constraints.
Smooth interpretation uses a gradient descent based method
to synthesize program’s control parameters for given rep-
resentative inputs [9] and probability distributions of in-
puts [7]. It requires the developer to manually select miss-
ing control parameters; it does not automatically transform
the fully accurate computation. [6] and [20] present quanti-
tative model checking frameworks for expressing and solv-
ing tradeoffs between quantitative properties of computa-
tions for reactive systems. These techniques are applicable
for computations modeled using Markov decision processes.

Accuracy Analysis of Program Transformations. Re-
searchers have presented several papers on static analysis
of program transformations that affect accuracy of results.
These techniques were used to justify the application of
transformations such as loop perforation [8, 13], reason
about differential privacy mechanisms [3, 15], or check the
satisfiability of probabilistic assertions in the presence of
external noise [10, 18]. However, the main focus of these
techniques is the analysis of error propagation and not the
search of profitable accuracy/performance tradeoffs.

7. Conclusion
The field of program optimization has focused, almost exclu-
sively since the inception of the field, on transformations that
do not change the result that the computation produces. The
recent emergence of approximate program transformations
promises to dramatically increase the scope and relevance
of program optimization techniques in a world increasingly
dominated by computations that can profitably trade off ac-
curacy in return for increased performance. Syndy provides
an opportunity to exploit such profitable tradeoffs by au-
tomatically synthesizing approximate map-fold programs,
while providing probabilistic accuracy guarantees.

References
[1] J. Ansel, C. Chan, Y. L. Wong, M. Olszewski, Q. Zhao, A. Edelman,

and S. Amarasinghe. Petabricks: a language and compiler for algo-
rithmic choice. PLDI, 2009.

[2] W. Baek and T. M. Chilimbi. Green: a framework for support-
ing energy-conscious programming using controlled approximation.
PLDI, 2010.

[3] G. Barthe, B. Köpf, F. Olmedo, and S. Zanella Béguelin. Probabilistic
reasoning for differential privacy. POPL, 2012.

[4] C. Bienia, S. Kumar, J. P. Singh, and K. Li. The PARSEC benchmark
suite: Characterization and architectural implications. In PACT ’08.

[5] M. Carbin, D. Kim, S. Misailovic, and M. Rinard. Proving accept-
ability properties of relaxed nondeterministic approximate programs.
PLDI, 2012.

[6] K. Chatterjee, T. Henzinger, B. Jobstmann, and R. Singh. Quasy:
Quantitative synthesis tool. In TACAS, 2011.

[7] S. Chaudhuri, M. Clochard, and A. Solar-Lezama. Bridging boolean
and quantitative synthesis using smoothed proof search. POPL, 2014.

[8] S. Chaudhuri, S. Gulwani, R. Lublinerman, and S. Navidpour. Proving
Programs Robust. FSE, 2011.

[9] S. Chaudhuri and A. Solar-Lezama. Smooth interpretation. PLDI ’10.
[10] A. Filieri, C. S. Păsăreanu, and W. Visser. Reliability analysis in

symbolic pathfinder. ICSE, 2013.
[11] H. Hoffman, S. Sidiroglou, M. Carbin, S. Misailovic, A. Agarwal, and

M. Rinard. Dynamic knobs for responsive power-aware computing.
ASPLOS, 2011.

[12] S. Misailovic and M. Rinard. Synthesis of randomized accuracy-
aware map-fold programs. Technical Report MIT-CSAIL-TR-2013-
031, MIT, 2013.

[13] S. Misailovic, D. Roy, and M. Rinard. Probabilistically Accurate
Program Transformations. SAS, 2011.

[14] S. Misailovic, S. Sidiroglou, H. Hoffmann, and M. Rinard. Quality of
service profiling. ICSE, 2010.

[15] J. Reed and B. C. Pierce. Distance makes the types grow stronger: a
calculus for differential privacy. In ICFP, 2010.

[16] M. Rinard. Probabilistic accuracy bounds for fault-tolerant computa-
tions that discard tasks. ICS, 2006.

[17] M. Rinard. Using early phase termination to eliminate load imbalances
at barrier synchronization points. OOPSLA, 2007.

[18] S. Sankaranarayanan, A. Chakarov, and S. Gulwani. Static analysis
for probabilistic programs: inferring whole program properties from
finitely many paths. In PLDI, 2013.

[19] S. Sidiroglou, S. Misailovic, H. Hoffmann, and M. Rinard. Managing
performance vs. accuracy trade-offs with loop perforation. FSE ’11.

[20] C. Von Essen and B. Jobstmann. Synthesizing efficient controllers. In
VMCAI, 2012.

[21] Z. Zhu, S. Misailovic, J. Kelner, and M. Rinard. Randomized
accuracy-aware program transformations for efficient approximate
computations. POPL, 2012.

	Introduction
	Example
	Approximating Computations

	Language
	Language Semantics

	Accuracy-Aware Transformations
	Optimal Configuration Synthesis
	Execution Configuration Selection

	Related Work
	Conclusion

