
Improving Coverage and Reliability in Approximate Computing
Using Application-Specific, Light-Weight Checks

Beayna Grigorian, Glenn Reinman
UCLA Computer Science Department

{bgrigori, reinman}@cs.ucla.edu

Abstract
Prior art in approximate computing has extensively stud-

ied computational resilience to errors. However, existing ap-
proaches often rely on static techniques, which potentially
compromise coverage and reliability. Our approach, on the
other hand, decouples error analysis of the approximate ac-
celerator from quality analysis of the overall application. We
use high-level, application-specific metrics, or Light-Weight
Checks (LWCs), to gain coverage by exploiting imprecision
tolerance at the application level. Unlike metrics that compare
approximate solutions to exact ones, LWCs can be leveraged
dynamically for error analysis and recovery, providing guar-
antees on worst-case application-level error. In our platform-
agnostic approach, these light-weight metrics are integrated
directly into the application, enabling compatibility with any
approximate acceleration technique. Our results present a
case study of dynamic error control for inverse kinematics.
Using software-based neural acceleration with LWC support,
we demonstrate improvements in coverage, reliability, and
overall performance.

1. Introduction
As a response to increasingly important concerns of power
and energy consumption, along with lofty performance goals,
computer architecture research has gravitated towards method-
ologies that provide inexact, yet acceptable solutions. Taking
inspiration from techniques in fault tolerance, approximate
computing [16] has evolved into a means for not only tol-
erating, but also embracing imprecision. An “approximate
accelerator”, or compute unit based on approximate hardware
(e.g. low-precision functional unit) or software (e.g. algorith-
mic shortcuts), leverages imprecision tolerance (i.e. “slack” in
computational accuracy) to improve performance and energy
consumption.

Prior art has extensively studied computational resilience
to errors in both hardware [37, 11, 1, 5, 12] and soft-
ware [19, 28, 25, 29, 26]. These existing approaches often
couple the overall application quality with the accuracy of the
approximate accelerator. Though this allows for efficient qual-
ity analysis by way of offline, static techniques [20], coverage
and reliability are potentially compromised.

Coverage is lost when cases that are statically determined
to lead to unacceptably inaccurate solutions are exempted
from approximation. This may occur, for instance, with inputs
outside the training data range or with the use of otherwise
inaccurate approximate accelerators. One approach to combat

this loss in coverage is to exploit algorithmic and cognitive
resilience [5], such as with high performance workloads from
Recognition, Mining, and Synthesis (RMS) [9], potentially
uncovering larger slack in accuracy. Related work includes
methodologies that employ high-level, application-specific
metrics for assessing output quality [1, 28, 22, 8]. These
metrics, however, often determine quality degradation of ap-
proximate solutions by measuring against exact solutions, such
as by finding the average difference between images produced
by approximate and exact versions of an image processing
application.

Dynamic reliability entails providing absolute guarantees
for satisfying quality of service (QoS) constraints. With static
quality analysis, guarantees on worst-case accuracy cannot
be provided unless the space of possible inputs is exhaus-
tively explored. As this is an inherent issue for approximation
techniques, instead of providing worst-case guarantees and
ensuring dynamic reliability, measures are often taken to stati-
cally mitigate low-quality results [13]. Despite its statistical
unlikelihood, however, a low-quality result could still render
an application’s output meaningless. This would be unaccept-
able for circumstances involving strict QoS expectations. As
such, we recognize a general need for mechanisms that allow
dynamic error analysis and control (much like with circuit-
level errors [11]). Moreover, since acceptable ranges of error
could vary across different uses of an application, user-based
specification of QoS constraints must also be featured. An ex-
ample of this would be using an inverse kinematics application
for robot control, which requires high precision for performing
surgery, yet tolerates lower precision for moving large blocks.

With coverage and reliability in mind, we have designed
an approach that decouples error analysis of the approximate
accelerator from quality analysis of the overall application.
Rather than relying on statically-constructed models of er-
ror distribution [20, 13, 7], we dynamically guarantee the
worst-case error for an application, as well as gain additional
coverage from leveraging slack that may not be evident at the
level of the approximation unit.

For achieving dynamic error detection, it is unreasonable
to compare an application’s exact output to the approximate
output, as the generation of the exact output would merely
add overhead, defeating the purpose of the approximation. As
a more high-level approach to quality analysis, we employ
Light-Weight Checks (LWCs). The key inspiration behind
this approach is that while finding a solution may be complex,

Table 1: Examples of applications, algorithms, domains, and LWCs

Application Sample Algorithm Application Domains Light-Weight Check (LWC)

Inverse Kinematics Cyclic Coordinate Descent Robotics, Graphics, Gaming Forward Kinematics
State Estimation Kalman Filter Navigation, Signal Processing, Finance Measurement Comparison
Physics-Based Simulation Gilbert-Johnson-Keerthi Gaming, Fluid Dynamics, Control Systems Energy Conservation
Image Denoising Total Variation Minimization Computer Vision, Medical Imaging Universal Image Quality Index

Application Sample Algorithm Application Domains Light-Weight Check (LWC)

Inverse Kinematics Cyclic Coordinate Descent Robotics, Graphics, Gaming Forward Kinematics
State Estimation Kalman Filter Navigation, Signal Processing, Finance Measurement Comparison
Physics-Based Simulation Gilbert-Johnson-Keerthi Gaming, Fluid Dynamics, Control Systems Energy Conservation
Image Denoising Total Variation Minimization Computer Vision, Medical Imaging Universal Image Quality Index

 checking the quality of that solution could be simple. By

definition, an LWC is a metric that is light-weight relative to
the application, allowing it to be utilized dynamically instead
of solely for the purpose of offline error analysis. This met-
ric is also application-specific, yet algorithm-independent,
meaning it is not necessarily bound by a specific implemen-
tation. Although LWCs are unique to each application, they
may be fairly easy to determine for certain categories of ap-
plications (e.g. problems that could be solved using iterative
refinement). Further descriptions and examples of LWCs are
presented in Section 2.

Once an LWC has been established for a given application,
the metric is integrated directly into the application, allowing
for a platform-agnostic implementation that is compatible
with any approximate acceleration technique. An interface
also exists for specification of a user-defined QoS threshold
based on the LWC. For each set of inputs to the application,
the approximate accelerator is initially executed and the result-
ing outputs are tested using the LWC. In case of unacceptable
quality loss, recovery is initiated by performing an exact com-
putation. Otherwise, the approximation is accepted and the
program moves onto the next set of inputs, allowing for per-
formance gains and energy savings without loss of reliability.

The following are the overall benefits of our approach:
I Reliable, dynamic guarantees on user-specified QoS;
I Better coverage for acceptable approximations;
I Platform agnosticism using application-based metrics;
I Negligible overhead using light-weight error checking.

2. Methodology
2.1. Light-Weight Checking
Static error analysis, such as establishing confidence inter-
vals [7] or finding average error across a range of training
values [13], is commonly used to control the usage of approx-
imate accelerators. In our approach, we advocate dynamic
quality analysis and approximation control by way of LWCs.
The key characteristics of LWCs are (1) application-specific
quality assessment, and (2) light-weight evaluation relative to
the application.

LWCs are not specific to any particular algorithm or imple-
mentation. They are only specific to the type of application.
For instance, physics-based simulation could involve many
variations on algorithms for collision detection and constraint
solving. However, an LWC for analyzing simulated scenes
would remain relevant across the different implementations.

By nature, these LWCs could be based on values accessed
from within the application (i.e. inputs, approximated outputs,
and intermediate values), or via external values (e.g. addi-
tional sensor-based inputs). In a mobile robot application, for
instance, an approximate accelerator used for augmenting the

navigation program may be provided with supplemental sen-
sory feedback, such as rangefinder data. This feedback may
or may not be directly used for planning high-level navigation
solutions, but it could be helpful in warning the robot about
possible nearby collisions, rendering it an ideal LWC.

Similar to existing methods for error control in approximate
computing [1, 19], it is the responsibility of the user to define
these light-weight quality metrics. However, while LWCs
are application-specific, they may be found fairly easily for
certain categories of applications. For instance, problems that
could be solved using iterative refinement, such as inverse
kinematics [35], may use the refinement criteria as an LWC.
Likewise, an LWC for image quality assessment could be
reused for various image processing applications, such as
image enhancement, restoration, manipulation, etc.

Once an LWC has been established for a given application,
in order to provide a platform-agnostic solution, the applica-
tion code is modified to execute the following:

(1) Call approximate accelerator
(2) Evaluate LWC and determine QoS
(3) If QoS constraint is met : Continue to next input
(4) Else: Recover – reprocess input with exact computation

Note that the LWC is checked once for each input, and not mul-
tiple times, as in incremental refinement [25]. Also, overall
quality of the application is assessed independently of the ap-
proximate accelerator, and recovery is dynamically initiated as
necessary. While overall performance is undoubtedly affected
by the performance and accuracy of the chosen approximate
accelerator, it is also largely impacted by the specified QoS
constraint and the nature of the inputs being processed.

2.2. Application Examples
Figure 1 contains examples of applications and their corre-
sponding LWCs. Inverse kinematics based on the Cyclic
Coordinate Descent method [35] is a well-known iterative
algorithm for computing joint angles given target positions.
This technique is commonly applied in robotics (e.g. robotic
arm motion) and graphics (e.g. character animation). By
adjusting joints in a series of steps, this iterative method con-
tinuously refines a solution until the end effector reaches the
goal within a given tolerance bound. The error in the solution
at each iteration is gauged using a quick forward kinematics
computation. This forward kinematics check is inherently
part of the iterative algorithm and is computationally simpler
than inverse kinematics. It is therefore application-specific
and light-weight, and serves as a valid LWC. Note that if the
application entails hardware sensors for robotic motion, for
example, sensory feedback would serve as an alternative LWC.

Another application that could benefit from LWC support is
state estimation using the Kalman filter [21]. The Kalman filter
is a recursive technique for state estimation of linear systems

2

0

5

10

15

20

25

30

35

40

45

50

5% 10% 15% 20% 25% 30%

Sp
e

ed
u

p
 o

ve
r

O
R

IG
_1

%

Error Tolerance Threshold

ORIG_1% ORIG_n% ACC+LWC ACC-LWC

Figure 1: Performance comparison of approximation schemes

0%

5%

10%

15%

20%

5.0% 5.5% 6.0% 6.5% 7.0% 7.5% 8.0% 8.5% 9.0% 9.5% 10.0%

Q
o

S
Fa

ilu
re

s
(%

 o
f

O
u

tp
u

ts
)

Error Tolerance Threshold

Lack of Reliability with ACC-LWC

Figure 2: Reliability issues of approximation without LWC

with applications in object tracking, localization, multimodal
data fusion, exchange rate modeling, voltage estimation, and
much more. Algorithmically, it includes a “prediction” step
followed by an “update” step for comparing the prediction
to actual measurements (e.g. from sensory feedback) and
using a gain matrix to adjust the state accordingly. Though
the computation of the gain is expensive, the measurement
comparison is light-weight and may be leveraged as an LWC.

With physics-based simulation, numerous algorithms could
be used for object motion, collision detection, collision re-
sponse, and constraint solving. However, regardless of those
algorithms, the LWC metric would entail analysis of the sim-
ulated scene itself. Prior work in accelerating physics en-
gines [37] has found energy conservation across scenes to be a
useful metric for analyzing approximation error. Since solving
for energy is considerably more light-weight than the entire
simulation process, this metric could serve as an LWC.

Our final example is for image denoising (e.g. using to-
tal variation minimization [34]). Quality assessment for the
outputs of this application could rely on an overarching im-
age analysis metric, such as the Universal Image Quality In-
dex (UIQI) [36]. Similar to the Peak Signal-to-Noise Ratio
(PSNR), which is commonly used for application-specific
quality analysis, UIQI is generally applicable to images. UIQI
is also easy to compute dynamically because it may serve as
a comparison metric based on input-output images without
the need for an exact output. However, unlike traditional er-
ror summation methods, UIQI models image distortion as a
combination of loss of correlation, luminance distortion, and
contrast distortion, allowing it to provide more meaningful
comparisons across different images. UIQI could therefore
be leveraged as a general-purpose LWC for image processing
applications.

3. Evaluation
3.1. Experimental Setup
To demonstrate the benefits of dynamic quality analysis using
LWCs, we examine inverse kinematics for a 3-joint arm. In
this case study, the application continuously receives target
x-y coordinates as input (e.g. for continuous robotic motion
or character animation). Though the application operates on
a non-data-parallel input stream, the computation for each
input could be accelerated using approximate computing tech-
niques. Also, the error tolerance threshold represents the

maximum percentage of error the user is willing to accept
for any given input, where error is measured as the distance
(relative to the total length of the arm) from the end effector to
the target location.

Though our approach is compatible with other approxima-
tion techniques, for the purposes of this paper we exemplify
benefits through software-based neural acceleration [13] (i.e.
integrating a trained neural network directly into application
code). To approximate inverse kinematics, a neural network
(NN) is trained using 7500 input-output sets. Each set contains
2 inputs for the target x-y coordinates and 3 outputs for the
joint angles; all values are expressed as floating point numbers.
The NN has a total of 4 layers: 1 input layer with 2 neurons,
2 hidden layers of 8 neurons each, and 1 output layer with 3
neurons. For our performance evaluations, we use 1024 input-
output sets, which are completely distinct from the training
data. With respect to this evaluation data, the average error of
our trained 8x8 NN is 4.1% with a standard deviation of 3.6%.

Our experiments are run on a 2GHz quad-core Intel Xeon
E5405 processor. In our results, we compare the following
schemes:
◦ ORIG_1%: Original benchmark with 1% set threshold.
◦ ORIG_n%: Original benchmark with user-specified

adjustable threshold “n”, which represents
QoS as maximum error being tolerated.

◦ ACC+LWC: Benchmark integrated with NN and LWC,
where the LWC is used to determine
when to make use of exact computation
(i.e. revert to ORIG_n% computation).

◦ ACC-LWC: Benchmark integrated with NN, but no
LWC is used; recovery is therefore never
initiated and the approximate solution
is always employed, regardless of error.

Note that, as iterative inverse kinematics repeatedly refines its
solution to match a given error threshold, the original bench-
mark could either be statically set to an “acceptable” threshold
(i.e. ORIG_1%), or could have the threshold be adjustable
based on user specification (i.e. ORIG_n%), which resembles
a software-based implementation of the incremental refine-
ment technique [25].

3.2. Experimental Results
3.2.1. Performance
Performance corresponding to each of the schemes described

3

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

50%

5% 10% 15% 20% 25% 30%

P
er

ce
n

ta
ge

 o
f

D
at

a
A

cc
e

le
ra

te
d

Error Tolerance Threshold

ACC+LWC Coverage for Out-of-Range Inputs

Figure 3: Amount of coverage for out-of-range inputs

0.0

0.5

1.0

1.5

2.0

0

2

4

6

8

10

12

5% 10% 15% 20% 25% 30%

■
 S

p
ee

d
u

p
 o

ve
r

O
R

IG
_n

%

■

Sp
e

ed
u

p
 o

ve
r

O
R

IG
_1

%

Error Tolerance Threshold

ACC+LWC Coverage for Out-of-Range Inputs

Figure 4: Speedup from coverage for out-of-range inputs

in Section 3.1 is represented in Figure 1. On average, com-
pared to the original benchmark with a set threshold of 1%
(ORIG_1%), we see performance gains of 3.4X for software-
based incremental refinement (ORIG_n%), 28.6X for neural
acceleration with LWC support (ACC+LWC), and 44X for
neural acceleration without LWC support (ACC-LWC).

Approximation via software-based incremental refine-
ment (ORIG_n%) and approximation with LWC support
(ACC+LWC) are comparable techniques because they are
both platform-agnostic approaches for dynamically ensur-
ing QoS. Our results for inverse kinematics demonstrate
an average improvement of 8.5X for ACC+LWC relative to
ORIG_n%. Although the main source of the performance
gain for ACC+LWC is the neural approximation, the efficiency
of its dynamic error analysis is due to LWC support, which
involves a single quick check for each approximation. The
incremental refinement in ORIG_n%, on the other hand, loses
efficiency as it satisfies QoS constraints by continuously check-
ing its solution at each iteration, incurring unnecessary costs
that render the light-weight nature of its checks ineffective.

In these result, ACC-LWC provides a notion of ideal gains
due to its inability to provide guarantees on worst-case accu-
racy. From these trends, we see the performance of ACC+LWC
rapidly approaching that of ACC-LWC for tolerance thresholds
ranging from 5%-30%, thereby emphasizing the light-weight
impact of our dynamic error management approach. The ma-
jority of the overhead preventing ACC+LWC from achieving
ideal ACC-LWC performance is caused by recovery stages
using exact computation. Though the need for recovery could
be reduced by using more accurate approximation techniques,
the higher accuracy would sacrifice performance in the accel-
erator. Excluding the overhead for recovery, the remaining
overhead, which is for evaluating the LWC, is negligible. In
this inverse kinematics benchmark, for instance, we observe
LWC overhead of less than 1% on average. Though the over-
head of an LWC will vary across different applications due
to its application-specific nature, it will remain beneficial for
dynamic error analysis so long as it is light-weight relative to
the overall application.

3.2.2. Reliability
As previously described, ACC-LWC achieves large, idealistic

performance gains due to a lack of LWC support and an inabil-
ity to initiate dynamic recovery. When the output quality of

an approximate accelerator is statically analyzed, the assump-
tion is that for the majority of executions, the approximation
unit will have errors near its average error value (i.e. within
a standard deviation given a normal distribution). Based on
this assumption, it would be acceptable to use an approxi-
mate accelerator for an application if its average error falls
within a given tolerance threshold, assuming the inputs also
fall within an acceptable range (e.g. the range of the training
data). However, though statistically less likely, there would
still be cases where the error exceeds the threshold, resulting
in a QoS failure.

In Figure 2, we present the QoS failures that occur when an
NN with 4.1% average error is used for accelerating inverse
kinematics with tolerance thresholds of 5%-10%. On aver-
age, we see QoS failures in 13% of the outputs. Notably, for
thresholds of 8%-10%, which are past a standard deviation
of the average error, there are QoS failures in 10% of the out-
puts, highlighting the unreliability of approximation without
LWC support. Furthermore, while the NN used in this exam-
ple approximates the entire application, there may be cases
where only a portion of the application is approximated. For
instance, if the floating point operations are computed using an
approximate floating point unit in hardware, this would result
in approximation of select parts of the application. For cases
such as this, QoS guarantees are even less reliable if based on
the approximation error of the accelerator (e.g. the accuracy
of the approximate floating point unit), as even small errors
may accumulate and result in unacceptably large quality loss
in the overall application. We therefore advocate analysis of
QoS based on application-level quality metrics.

3.2.3. Coverage
Approximate accelerators are often unused when input data
lies outside an acceptable range, such as the range of the
training data for a neural accelerator [13]. This decision is
based on the assumption that out-of-range inputs result in poor
approximations. To demonstrate how this may be a costly
oversight, we feed 1024 out-of-range inputs to our 8x8 NN,
and reveal how 9%-47% of the data could be approximated
acceptably for tolerance thresholds of 5%-30% (Figure 3),
leading to average performance improvements of 5.6X over
ORIG_1% and 1.6X over ORIG_n% (Figure 4).

Similarly, static techniques for error analysis (e.g. statistical
models) disallow the use of an accelerator when its average

4

0%

10%

20%

30%

40%

50%

60%

70%

3% 4% 5% 6% 7% 8%

P
er

ce
n

ta
ge

 o
f

D
at

a
A

cc
e

le
ra

te
d

Error Tolerance Threshold

ACC+LWC Coverage with Less Accurate NN

Figure 5: Amount of coverage with less accurate approx.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

3% 4% 5% 6% 7% 8%

■
 S

p
e

ed
u

p
 o

ve
r

O
R

IG
_

n
%

■

Sp
e

ed
u

p
 o

ve
r

O
R

IG
_1

%

Error Tolerance Threshold

ACC+LWC Coverage with Less Accurate NN

Figure 6: Speedup from coverage with less accurate approx.

error is above the tolerance threshold. Relying on the as-
sumption that there would be too many cases of unacceptable
quality loss, these static techniques lose coverage with por-
tions of the data for which the low-accuracy accelerator could
produce acceptable results. For instance, we train a smaller
NN (same as the previous NN, only the 2 hidden layers each
have 4 neurons) and find it has an average error of 8.9% (with a
standard deviation of 11.7%) for the evaluation data. Although
this error exceeds tolerance thresholds of 3%-8%, significant
portions of the data (i.e. 22%-58%) may still be reliably ac-
celerated (Figure 5), resulting in average performance gains
of 2.5X over ORIG_1% and 1.9X over ORIG_n% (Figure 6).
Furthermore, while these gains are with respect to an entirely
software-based accelerator, efficient hardware-based approxi-
mate accelerators may be coupled with LWC support to yield
even greater performance improvements.

4. Related Work
4.1. Approximate Computing
Approximate computing has been studied extensively for the
purposes of improving performance, energy consumption, and
resource utilization. There exist numerous hardware-based ap-
proaches, including stochastic or probabilistic technology [4,
24, 27], approximate circuitry for arithmetic [37, 20, 15] as
well as general logic [23, 6, 32], architectures based on volt-
age scaling [11, 12, 18], and processing units for comput-
ing neural-network-based approximations [13]. In relation
to these approaches, our methodology is software-based and
platform-agnostic, allowing it to be interchangeably coupled
with different approximate accelerators. We also make the dis-
tinction to decouple error analysis of the approximation unit
from quality analysis of the overall application, demonstrating
benefits in terms of coverage and reliability.

Prior art has also explored purely software-based approxi-
mate computing. Incremental refinement [25] and loop perfo-
ration [29], for instance, approximate iteratively-constructed
solutions by reducing compute iterations. Other dynamic ap-
proaches include selective bit-width adaptation [26] and trans-
formation of static configuration parameters into adjustable
knobs [19]. Though our approach is similarly software-based,
we employ high-level quality metrics and avoid unneces-
sary error checking. We also obviate the need for statically-
constructed models of error distribution, allowing us to provide
absolute guarantees on worst-case error.

In addition to pure hardware- or software-based solutions,
approximate computing experts have also looked to hardware-
software codesign. These systems [1, 5, 12, 8] typically in-
clude software support (e.g. new programming language
and compiler) along with a series of architectural innova-
tions (e.g. ISA extensions). Similar to these techniques,
our software-based methodology could be combined with
hardware-based approximate accelerators to form a synergistic
hardware-software design. Unlike these approximate com-
puting systems, however, we endorse a methodology based
entirely on dynamic application-level error analysis, gaining
additional coverage from leveraging slack that may not be
evident at the level of the approximation unit.

4.2. Error Management
Language features, static analysis, and program logic may be
used to control the impact of errors and ensure reliability dur-
ing program execution [3, 14]. With EnerJ [28], for example,
language support enables protection of specific values and
compute regions, allowing hardware to readily perform ap-
proximate computation without being burdened by online error
detection. Novelty detection [2], which enables recognition
of out-of-range inputs using statistical estimations, may also
be used to avoid potentially poor approximations. Likewise,
correction mechanisms, such as those based on algorithmic
noise tolerance [18, 31], allow for detection of errors during
the course of the algorithm, albeit at an additional hardware
cost. Error acceptance [17] also relates to our research, as it
allows erroneous results to proceed so long as overall applica-
tion output quality is not compromised. However, though the
growth of error rates is controlled during program execution,
there is no mechanism for dynamically leveraging the error
information to initiate recovery for cases with unacceptable
quality loss.

4.3. Error Analysis
Common metrics for error analysis include error rate (ER),
error significance (ES), mean squared error (MSE), root mean
squared error (RMSE), mean error distance (MED), and peak
signal-to-noise ratio (PSNR) [16, 33]. Error could also be
predicted using estimations of confidence intervals [7, 10] and
error bounds [30]. Error prediction is an orthogonal approach
compared to our methodology, and could be readily combined
with error detection and recovery mechanisms to provide a
more wholistic approach to imprecision tolerance.

5

Application-specific error analysis [22], on the other hand,
is most relevant to our work. Approaches such as ERSA [5]
and EnerJ [28] similarly conduct high-level error analysis
using application-specific quality metrics. However, output
quality degradation of approximate executions is most often
measured with respect to precise executions (e.g. deviations in
classification results), deeming the QoS metrics unsuitable for
light-weight, dynamic error detection. These works neverthe-
less present thorough studies pertaining to application-level
correctness, such as its impact on fault tolerance [22], thereby
providing further support for the basis of our methodology.

5. Conclusion
In conclusion, we have presented a methodology for perform-
ing online error analysis and recovery based on LWCs, lever-
aging application-level imprecision tolerance to improve cov-
erage and reliability. Platform-agnostic in nature, LWCs allow
for an elegant solution to dynamic error control.

6. Acknowledgements
This work is supported by the NSF Graduate Research Fellow-
ship Grant # DGE-0707424. It is also supported in part by the
Center for Future Architectures Research (C-FAR), one of six
centers of STARnet, a Semiconductor Research Corporation
program sponsored by MARCO and DARPA.

References
[1] Woongki Baek and Trishul M. Chilimbi. Green: A Framework for

Supporting Energy-Conscious Programming using Controlled Approx-
imation. In PLDI, pages 198–209, 2010.

[2] C. M. Bishop. Novelty Detection and Neural Network Validation.
Vision, Image and Signal Processing, 141(4):217–222, 1994.

[3] Michael Carbin, Sasa Misailovic, and Martin C. Rinard. Verifying
Quantitative Reliability for Programs That Execute on Unreliable Hard-
ware. In OOPSLA, pages 33–52, 2013.

[4] L. N. Chakrapani, B. E. S. Akgul, S. Cheemalavagu, P. Korkmaz,
K. V. Palem, and B. Seshasayee. Ultra-Efficient (Embedded) SOC
Architectures Based on Probabilistic CMOS (PCMOS) Technology. In
DATE, pages 1–6, 2006.

[5] Hyungmin Cho, L. Leem, and S Mitra. ERSA: Error Resilient System
Architecture for Probabilistic Applications. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 31(4):546–
558, 2012.

[6] M. R. Choudhury and K. Mohanram. Approximate Logic Circuits for
Low Overhead, Non-Intrusive Concurrent Error Detection. In DATE,
pages 903–908, 2008.

[7] G. Chryssolouris, M. Lee, and A. Ramsey. Confidence Interval Pre-
diction for Neural Network Models. IEEE Transactions on Neural
Networks, 7(1):229–232, 1996.

[8] Marc de Kruijf, Shuou Nomura, and Karthikeyan Sankaralingam. Re-
lax: An Architectural Framework for Software Recovery of Hardware
Faults. In ISCA, pages 497–508, 2010.

[9] Pradeep Dubey. A Platform 2015 Workload Model: Recognition,
Mining and Synthesis Moves Computers to the Era of Tera. White
paper, Intel Corporation, 2007.

[10] B. Efron and R. Tibshirani. Bootstrap Methods for Standard Errors,
Confidence Intervals, and Other Measures of Statistical Accuracy.
Statistical Science, 1(1):54–75, 1986.

[11] Dan Ernst, Nam Sung Kim, Shidhartha Das, Sanjay Pant, Rajeev Rao,
Toan Pham, Conrad Ziesler, David Blaauw, Todd Austin, Krisztian
Flautner, and Trevor Mudge. Razor: A Low-Power Pipeline Based on
Circuit-Level Timing Speculation. In MICRO, pages 7–18, 2003.

[12] Hadi Esmaeilzadeh, Adrian Sampson, Luis Ceze, and Doug Burger.
Architecture Support for Disciplined Approximate Programming. In
ASPLOS, pages 301–312, 2012.

[13] Hadi Esmaeilzadeh, Adrian Sampson, Luis Ceze, and Doug Burger.
Neural Acceleration for General-Purpose Approximate Programs. In
MICRO, pages 449–460, 2012.

[14] Shuguang Feng, Shantanu Gupta, Amin Ansari, and Scott Mahlke.
Shoestring: Probabilistic Soft Error Reliability on the Cheap. In
ASPLOS, pages 385–396, 2010.

[15] V. Gupta, D. Mohapatra, A. Raghunathan, and K. Roy. Low-Power
Digital Signal Processing Using Approximate Adders. IEEE Transac-
tions on Computer-Aided Design of Integrated Circuits and Systems,
32(1):124–137, 2013.

[16] J. Han and M. Orshansky. Approximate Computing: An Emerging
Paradigm for Energy-Efficient Design. In Proceedings of the 18th
IEEE European Test Symposium, pages 1–6, 2013.

[17] K. He, A. Gerstlauer, and M. Orshansky. Controlled Timing-Error
Acceptance for Low Energy IDCT Design. In DATE, pages 1–6, 2011.

[18] R. Hegde and N. R. Shanbhag. Soft Digital Signal Processing. IEEE
Transactions on VLSI, 9(6):813–823, 2001.

[19] Henry Hoffmann, Stelios Sidiroglou, Michael Carbin, Sasa Misailovic,
Anant Agarwal, and Martin Rinard. Dynamic Knobs for Responsive
Power-Aware Computing. In ASPLOS, pages 199–212, 2011.

[20] Jiawei Huang, John Lach, and Gabriel Robins. A Methodology for
Energy-Quality Tradeoff Using Imprecise Hardware. In DAC, pages
504–509, 2012.

[21] R. E. Kalman. A New Approach to Linear Filtering and Prediction
Problems. Journal of Basic Engineering, 82:35–45, 1960.

[22] X. Li and D. Yeung. Application-Level Correctness and its Impact on
Fault Tolerance. In HPCA, pages 181–192, 2007.

[23] Shih-Lien Lu. Speeding Up Processing with Approximation Circuits.
Computer, 37(3):67–73, 2004.

[24] S. Narayanan, J. Sartori, R. Kumar, and D. L. Jones. Scalable Stochastic
Processors. In DATE, pages 335–338, 2010.

[25] S. H. Nawab, A. V. Oppenheim, A. P. Chandrakasan, J. M. Winograd,
and J. T. Ludwig. Approximate Signal Processing. Journal of VLSI
Signal Processing Systems for Signal, Image and Video Technology,
15(1–2):177–200, 1997.

[26] J. Park, J. H. Choi, and K. Roy. Dynamic Bit-Width Adaptation in DCT:
An Approach to Trade Off Image Quality and Computation Energy.
IEEE Transactions on VLSI, 18(5):787–793, 2010.

[27] W. Qian, X. Li, M. D. Riedel, K. Bazargan, and D. J. Lilja. An
Architecture for Fault-Tolerant Computation with Stochastic Logic.
IEEE Transactions on Computers, 60(1):93–105, 2011.

[28] Adrian Sampson, Werner Dietl, Emily Fortuna, Danushen Gnanapra-
gasam, Luis Ceze, and Dan Grossman. EnerJ: Approximate Data
Types for Safe and General Low-Power Computation. In PLDI, pages
164–174, 2011.

[29] Stelios Sidiroglou-Douskos, Sasa Misailovic, Henry Hoffmann, and
Martin Rinard. Managing Performance vs. Accuracy Trade-Offs with
Loop Perforation. In ESEC/FSE, pages 124–134, 2011.

[30] N. W. Townsend and L. Tarassenko. Estimations of Error Bounds
for Neural-Network Function Approximators. IEEE Transactions on
Neural Networks, 10(2):217–230, 1999.

[31] G. V. Varatkar and N. R. Shanbhag. Energy-Efficient Motion Estima-
tion Using Error-Tolerance. In ISLPED, pages 113–118, 2006.

[32] S. Venkataramani, A. Sabne, V. Kozhikkottu, K. Roy, and A. Raghu-
nathan. SALSA: Systematic Logic Synthesis of Approximate Circuits.
In DAC, pages 796–801, 2012.

[33] R. Venkatesan, A. Agarwal, K. Roy, and A. Raghunathan. MACACO:
Modeling and Analysis of Circuits for Approximate Computing. In
ICCAD, pages 667–673, 2011.

[34] Luminita A. Vese and Stanley J. Osher. Image Denoising and Decom-
position with Total Variation Minimization and Oscillatory Functions.
Journal of Mathematical Imaging and Vision, 20(1–2):7–18, Jan 2004.

[35] Li-Chun Tommy Wang and Chih Cheng Chen. A Combined Optimiza-
tion Method for Solving the Inverse Kinematics Problem of Mechan-
ical Manipulators. IEEE Transactions on Robotics and Automation,
7(4):489–499, Aug 1991.

[36] Z. Wang and A. C. Bovik. A Universal Image Quality Index. IEEE
Signal Processing Letters, 9(3):81–84, 2002.

[37] Thomas Yeh, Petros Faloutsos, Milos Ercegovac, Sanjay Patel, and
Glenn Reinman. The Art of Deception: Adaptive Precision Reduction
for Area Efficient Physics Acceleration. In MICRO, pages 394–406,
2007.

6

	Introduction
	Methodology
	Light-Weight Checking
	Application Examples

	Evaluation
	Experimental Setup
	Experimental Results
	Performance
	Reliability
	Coverage

	Related Work
	Approximate Computing
	Error Management
	Error Analysis

	Conclusion
	Acknowledgements

