
Tuning Approximate Computations
with Constraint-Based Type Inference

Brett Boston Adrian Sampson Dan Grossman Luis Ceze
University of Washington

Abstract
Unreliable hardware can lead to great gains in energy effi-
ciency, but it can be difficult to reason about how unreliable
each operation in a computation may feasibly be. To make
approximate computing viable, we need tools that can help
programmers derive precision–energy trade-offs for individ-
ual fine-grained operations while reasoning about the collec-
tive impact on the result quality. We formulate the problem
of precision tuning as type inference over a system of types
parameterized on their accuracy. Our type inference system
generates numerical constraints and uses an SMT solver to
produce parameters for unspecified types. Programmers can
choose to provide explicit types where they make sense and
depend on inference where the appropriate accuracy parame-
ter is unclear. Remaining research challenges are discussed.

1. Introduction
Approximate computing seeks to exploit the accuracy–
efficiency trade-offs of computer systems and software. Ap-
plications that can harness unreliable hardware to do useful
work can save time, energy, and complexity over traditional,
fully precise execution. But a persistent challenge remains in
relating the accuracy of individual operations in a program
to the program’s overall reliability. Programmers need a way
to easily control fine-grained accuracy–efficiency trade-offs
that pervade approximate programs while understanding
how those individual decisions can compromise important
accuracy properties.

This paper proposes a lightweight type system that cap-
tures the probability of correctness for every expression
in the program, from individual approximate operations to
computation outputs. The type system checks that the pro-
gram upholds programmer-written reliability properties. We
propose a system resembling constraint-based type infer-
ence that alleviates the need for many annotations. Inference
automatically tunes the types to save as much energy as pos-
sible while meeting programmer-specified accuracy require-
ments by choosing the “best” solution to underconstrained
systems.

Paired with our inference technique, the proposed type
system gives programmers the flexibility to add accuracy

requirements where they make sense and omit them where
they are less obvious. Expert programmers can optimize
approximate code by exerting total control over every type
in the program; casual programmers in earlier development
phases can opt to rely more heavily on inference. The project
is still at an early stage and there are substantial research
questions to be resolved, but this inference approach shows
the potential for making approximate programming easier
throughout the software development lifecycle.

2. Objective
We refine the notion of precision types from EnerJ [10] to
capture the probability that an expression is correct. In En-
erJ’s original formulation, every expression has a type that is
either precise, permitting no approximation, or approximate,
permitting arbitrary errors. The decision about the degree
of precision—how approximate an expression is allowed to
be—is relegated to another system such as a profile-based
tuner. The task of choosing precision is further complicated
when each operation may have a distinct precision, as in the
Quora ISA [11]. This paper addresses the problem of ex-
pressing and tuning these per-operation precisions.

We extend EnerJ’s type system to explicitly represent pre-
cision parameters in the types. Each approximate type indi-
cates the probability that, in any given execution, the value
equals the corresponding value in an error-free execution; if
this is satisfied, we would say that the value is correct. For
example, @Approx(0.9) int denotes an integer that is cor-
rect at least 90% of the time. This accuracy parameter resem-
bles the reliability property proposed by Carbin et al. [2].

Consider this simple example using parameterized @Approx
type qualifiers:

@Approx(0.8) int square(@Approx(0.9) int x) {

@Approx(0.8) int xSquared = x * x;

return xSquared;

}

The multiplication expression x * x is correct when both of
the subexpressions are correct (assuming that the multiplica-
tion itself is precise). Specifically, the expression is correct
with probability at least 0.9 × 0.9 = 0.81. The assignment

approx-within draft: rev. a7b22f6086ac+ 1 2014/2/14



into xSquared typechecks because this probability exceeds
the required 0.8 for the local variable.

Intuitively, it is illegal to assign a value with a low guar-
antee of correctness to a variable with higher precision, but
the opposite direction must be legal. Put informally, let ≺
denote a subtyping relationship among qualified types q τ .
Then the rule for precision-qualified types is:

x ≥ y
@Approx(x) τ ≺ @Approx(y) τ

For backwards compatibility with EnerJ, @Approx is syntac-
tic sugar for @Approx(0.0) (no guarantees) and @Precise

is equivalent to @Approx(1.0) (no errors).
If Γ ` e : q τ gives types q τ to expressions e, then we

can write the type rule for addition expressions a+p b where
p denotes the probability that the addition is correct:

Γ ` e1 : @Approx(p1) Γ ` e2 : @Approx(p2)

Γ ` e1 +p e2 : @Approx(p1 · p2 · p)

This rule reflects the joint probability of statistically inde-
pendent events. The expression’s output is correct if both
operands are correct and the operation itself behaves cor-
rectly. So the probability that the sum is correct is the prod-
uct of the probabilities for those three events.

This sketch illustrates three issues with this straightfor-
ward extension of EnerJ’s type system:

1. Without syntactic support for annotations on operators,
how do we assign precision parameters to operations (as
in the multiplication in the above code example)?

2. Marking every variable with a probability seems like a
high annotation burden. Can we let the programmer omit
some parameters?

3. Methods must be overloaded to enable different degrees
of approximation if there is significant variability in pa-
rameter correctness.

We can address each of these problems with type inference.
We extend the above language with a “wildcard” qualifier
@Approx(*). Programmers can use this qualifier directly,
but it is also used implicitly for intermediate expressions
where types are not explicitly written. With these extensions,
the simple example above becomes:

@Approx(*) int square(@Approx(*) int x) {

@Approx(*) int xSquared = x * x;

return xSquared;

}

As a more concrete example, consider the approximate
fast inverse square root algorithm [8] used for quick light-
ing calculations in computer graphics. Here, we extend the
algorithm to use parameterized @Approx annotations. This
allows the graphics programmer to aggressively approxi-
mate lighting on objects that are far away, while maintaining

greater precision on nearby objects that the viewer is likely
to notice. By using type inference, the caller of the function
does not need to know how to find appropriate values for in-
ternal wild cards as they will be inferred from the probability
of correctness for n and the return type.

@Approx(*) float invSqrt(@Approx(*) float n) {

@Approx(*) int i;

@Approx(*) float x2, y;

x2 = n * 0.5F;

i = Float.floatToIntBits(endorse(n));

i = 0x5f3759df - (i >> 1);

y = Float.intBitsToFloat(endorse(i));

y = y * (1.5F - (x2 * y * y));

return y;

}

3. Inferring Precision Types
While constraint-based type inference is nothing new, our
type system poses a unique challenge in that its types are
continuous. We use an SMT solver to find real-valued type
assignments given constraint in the form of inequalities.

As an example, consider a program with one unknown
precision (that of an operator):

@Approx(0.9) int a, b;

...

@Approx(0.8) int c = a + b;

The program generates trivial constraints for each variable
type, a subtyping inequality for the assignment, and a prod-
uct constraint for the binary operator:

pa = 0.9

pb = 0.9

pc = 0.8

pc ≤ pexpr

pexpr = pa · pb · pop

Here, pop denotes the precision of the + operator itself and
pexpr is the precision of the expression a + b. Solving the
system yields a valuation for pop. If the system is unsatis-
fiable, then no precision suffices to meet the programmer’s
demands and an error is issued.

The generated constraint systems are necessarily under-
constrained: there may be multiple satisfying type assign-
ments for a program. In our example, pop = 0.99 satisfies
the system, but other valuations are also possible. We want
to find the valuation that leads to the greatest energy sav-
ings. To do this, we produce an objective function that is a
proxy for energy savings: specifically, we minimize the total
precision over all operators in the program.

The current prototype generates constraints that are then
fed to the Z3 SMT solver [3]. Due to the fact that Z3 lacks an

approx-within draft: rev. a7b22f6086ac+ 2 2014/2/14



optimizer, we minimize the objective function using binary
search. This works by emitting an inequality constraint that
limits the objective function’s value and searching for the
smallest limit that makes the system satisfiable.

Lastly, the compiled binary, including precision values
for each operator, may be run on a simulator to gather in-
formation about actual energy usage.

4. Known Issues
This work is still at an early stage, so there are a number of
issues that we need to address in realizing the system.

Modularity The system as proposed is interprocedural.
Functions must be re-checked for each set of parameter
types, which effectively in-lines them for the purpose of
type-checking. One approach to a modular analysis is to
adopt the interfaces of Carbin et al.’s Rely system [2], which
expresses a returned value’s accuracy in terms of the argu-
ment accuracy.

Optimization efficiency Our approach to optimization—
binary search on the objective function—is a hack that lets
us treat a solver as an optimizer. A more principled approach
would formulate the constraints as an optimization problem
with known efficient algorithms—e.g., linear, quadratic, or
semidefinite programming. Alternatively, we will consider
adopting a different full SMT solver that supports optimiza-
tion directly, a feature that Z3 itself eventually may add [4].

Storage and time-sensitivity Our type system only allows
for approximate execution of operations, but approximate
hardware has been proposed that allows errors in storage [6,
7]. In approximate storage techniques that allow bits to de-
cay over time, error probabilities are correlated with real
time. We can approximate this effect with knowledge of vari-
able lifetime.

Error messages Like any type inference system, ours
needs a mechanism for emitting helpful error messages
when inference fails—i.e., when a program’s constraint sys-
tem is unsatisfiable. In our SMT-based formulation, this
amounts to finding those constraints that are “responsible”
for preventing satisfiability. One approach is to solve the
MAXSMT problem: to find the largest subset of the con-
straints that are satisfiable. The remaining constraints corre-
spond to expressions that need the developer’s attention.

Control flow divergence Our type system does not reason
about programs where errors can cause control flow to differ
between precise and approximated executions. A formalism
will need to define what a variable’s precision means when
the variable may be defined in one execution and not in the
other. Carbin et al. [1] address this issue in a system for
proving relational properties for relaxed programs.

5. Related Work
Rely [2] checks reliability specifications, which resemble
our parameterized types, given error probabilities for each
operation. The goal of our system is to determine the op-
timal probabilities rather than to check a particular set of
probabilities given a priori.

ExpAX [5] uses a data flow analysis combined with a
genetic algorithm to determine which operations in a pro-
gram to approximate without requiring per-variable or per-
operation annotation. Our approach solves a complementary
problem: it determines the degree of precision for operations
that are explicitly annotated as approximate.

Precimonious [9] solves a related problem in floating-
point programming: how many digits are required in each in-
termediate number representation to meet an accuracy bound
in the output? The two kinds of precision are orthogonal: a
full system could combine this analysis of rounding errors
with our proposed analysis of probabilistic errors.

6. Conclusion
Approximate programming models need tools that help de-
velopers decide how much precision is necessary through-
out an algorithm. However, fully automatic approaches are
equally problematic: programmers sometimes need fine-
grained control and can (wisely) distrust opaque auto-tuners.
Type inference offers an intermediate solution. Programmers
can collaborate with the tool by providing sparse annotations
and depend on inference to fill in the rest.

Acknowledgments
This work was supported in part by C-FAR, one of six
centers of STARnet, a Semiconductor Research Corporation
program sponsored by MARCO and DARPA.

References
[1] M. Carbin, D. Kim, S. Misailovic, and M. C. Rinard. Reason-

ing about relaxed programs. In PLDI, 2012.

[2] M. Carbin, S. Misailovic, and M. Rinard. Verifying quanti-
tative reliability of programs that execute on unreliable hard-
ware. In OOPSLA, 2013.

[3] L. De Moura and N. Bjørner. Z3: An efficient SMT solver. In
TACAS/ETAPS, 2008.

[4] L. de Moura and G. O. Passmore. (Exact global non-
linear) optimization on demand. ADDCT-2013, CADE-
24, 2013. URL http://www.cl.cam.ac.uk/~gp351/

Passmore-Moura-ADDCT-talk-2013.pdf.

[5] H. Esmaeilzadeh, K. Ni, and M. Naik. Expectation-oriented
framework for automating approximate programming. Tech-
nical Report GT-CS-13-07, Georgia Institute of Technology.

[6] H. Esmaeilzadeh, A. Sampson, L. Ceze, and D. Burger. Ar-
chitecture support for disciplined approximate programming.
In ASPLOS, 2012.

approx-within draft: rev. a7b22f6086ac+ 3 2014/2/14



[7] S. Liu, K. Pattabiraman, T. Moscibroda, and B. G. Zorn.
Flikker: Saving DRAM refresh-power through critical data
partitioning. In ASPLOS, 2011.

[8] C. Lomont. Fast inverse square root. 2003. URL http:

//www.lomont.org/Math/Papers/2003/InvSqrt.pdf.

[9] C. Rubio-González, C. Nguyen, H. D. Nguyen, J. Demmel,
W. Kahan, K. Sen, D. H. Bailey, C. Iancu, and D. Hough.
Precimonious: Tuning assistant for floating-point precision. In
Supercomputing, 2013.

[10] A. Sampson, W. Dietl, E. Fortuna, D. Gnanapragasam,
L. Ceze, and D. Grossman. EnerJ: Approximate data types
for safe and general low-power computation. In PLDI, 2011.

[11] S. Venkataramani, V. K. Chippa, S. T. Chakradhar, K. Roy,
and A. Raghunathan. Quality programmable vector proces-
sors for approximate computing. In MICRO, 2013.

approx-within draft: rev. a7b22f6086ac+ 4 2014/2/14


