
Nonvolatile Memory is a Broken Time Machine

Benjamin Ransford
University of Washington

Brandon Lucia
Microsoft Research

Abstract
Energy harvesting enables intermittently powered devices
to compute without built-in power. But frequent power fail-
ures, combined with nonvolatile memory intended to protect
computational state, introduce strange control flow that turns
sequential code into unwieldy concurrent code: programs
must grapple with their own state from previous interrupted
runs. This paper describes the broken time machine problem
for these devices and outlines potential solutions from the
perspective of safe concurrent programming.

Categories and Subject Descriptors D.4.5 [Operating Sys-
tems]: Checkpoint/restart

Keywords Nonvolatile memory, intermittent power

1. Introduction
Embedded devices with general-purpose CPUs are increas-
ingly powering emerging applications like the “internet of
things,” wearable computing, and implantable medical de-
vices. Recent enhancements in energy harvesting make it
possible to power such devices solely from energy in their
environments, reducing size and weight [3], but at a cost
of unpredictable, intermittent power—breaking the familiar
abstraction of a constant power supply. When not enough
energy is available, an energy-harvesting device is forced to
power down and wait for better conditions. Powering down
destroys volatile state including execution context, but non-
volatile data (in flash, FRAM, etc.) are retained; eventually
execution resumes from the start of the program.

This position paper explains how frequent reboots make
programming complicated and how nonvolatile memory com-
pounds that complexity. Our position is that key challenges
remain in providing system support for application correct-
ness on intermittently powered devices.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
MSPC’14, June 13, 2014, Edinburgh, United Kingdom.
Copyright c© 2014 ACM 978-1-4503-2917-0/14/06. . . $15.00.
http://dx.doi.org/10.1145/2618128.2618136

2. Broken Time Machines
Losing state impedes progress under adverse power condi-
tions. It also complicates program analysis by introducing
an implicit edge in the control-flow graph (CFG) from each
program statement to the beginning of the program. Fig. 1a
shows a program that extends a buffer by one character. With-
out power failures, this code is sequential. If the power fails
in append(), control flows back to its call site in main(). Arcs
represent the control flow edges that are both implicit (not re-
flected in the code) and non-local (cross function boundaries).
Implicit, non-local control flow is hard to reason about.

Recent work [4, 7] observed that by periodically check-
pointing execution context to nonvolatile memory, it is possi-
ble to make progress despite power failures. Checkpointing
preserves volatile state, but introduces yet more implicit CFG
edges, from each instruction to checkpoints.

In addition to complicating control flow, checkpoints
combined with explicit manipulation of other nonvolatile
data can lead to inconsistent program states after a power
failure. After a failure, restoring a checkpoint may result in
two kinds of inconsistency. NV-internal inconsistency occurs
if data structures in nonvolatile memory are partially updated
before an interruption. NV-external inconsistency occurs if
nonvolatile memory is updated after one checkpoint, but an
interruption occurs before the next checkpoint.

Fig. 1b shows how NV-internal inconsistency affects a
dynamic execution of the code from Fig. 1a. len and buf are
nonvolatile and should be updated atomically. In the figure,
the power fails after len is incremented, but before buf is
updated, violating the update’s atomicity. Control flows back
to main() and again into append(). At next boot, the function
increments len again, causing an inconsistency: len was
incremented twice and buf was never updated. When buf is
updated, append() writes its second entry, not its first.

Fig. 1c shows NV-external inconsistency in an execution
of the code in Fig. 1a. The execution calls and fully executes
append(). Power fails just before the function returns. The
execution restarts in main() and fully executes append(). By
the end, two characters were appended to buf, despite the
presence of only one call to append(). len and buf were
updated atomically; the cause of the error in this case is
that the persistent variables reflect updates made after the
point where execution resumes after failure. On restart, the
variables’ values are from an interrupted, hypothetical future.1

1 Hence the metaphor of a broken time machine, a classic comedy trope.

int len; char buf[];
void main(…){
 append(‘x’); }
void append (char c) {
 len++;
 buf[len]=c; }

Im
pli

cit
, n

on
-lo

ca
l

CFG ed
ge

s

(a) Power failures result in control flow.

 append(‘x’);
 len++;

D
yn

am
ic

 E
xe

cu
tio

n

 append(‘x’);
 len++;
 buf[len]=‘x’;

Error: ‘x’ goes to

wrong entry in buf

(b) NV-internal inconsistency.

 append(‘x’);
 len++;
 buf[len]=‘x’;

D
yn

am
ic

 E
xe

cu
tio

n

 append(‘x’);
 len++;
 buf[len]=‘x’;

Error: append()

runs twice, not once

(c) NV-external inconsistency.

Figure 1: (a) The arcs show two possible control flows from points in app() to a point in a different function. Despite not being explicit in the code these
flows may be exercised when power fails. (b) The nonvolatile variables len and buf should be updated atomically. A power failures violates the atomicity of
the updates leading to an inconsistent program state. (c) Even if len and buf are updated atomically, (e.g., using system support [2, 5, 11]) inconsistency
between nonvolatile state and the execution context after a failure can lead to incorrect behavior.

Prior work on transactional nonvolatile object updates [2, 5,
11] provide atomicity, addressing NV-internal inconsistency,
but do not address NV-external inconsistency. Even with
atomic updates, the data are out of sync with the execution
context just after the restart. We assert that systems must
prevent both forms of inconsistency.

Ubiquitous NV memory. Forthcoming nonvolatile mem-
ory technology may move all storage (except execution con-
text) into nonvolatile memory [1, 10, 12]. This approach
provides “free” persistence, but it also suggests a worrisome
distinction, from a consistency perspective. Programs may
use state that is intentionally nonvolatile, like persistent data
structures. But programs are also likely to use state that is
incidentally nonvolatile, like loop induction variables. Both
types persist across failures, and both are vulnerable to the
kinds of inconsistency described above.

3. Research Challenges
Our position is that we need new programming models and
system support to address correctness and programmability
in intermittently powered systems.

System support. One approach to preventing the inconsis-
tencies we describe is to checkpoint all persistent state. This
approach increases the storage and access cost of nonvolatile
variables, which is most likely unacceptable under the tight
resource limits of energy-harvesting devices. Future work
should study how to reduce these costs.

Another approach is to provide system support for
lightweight, application-specific recovery after power loss,
inspired by recovery blocks [6]. An effective recovery mecha-
nism facilitates reasoning about nonvolatile and checkpointed
state after a failure, and allows writing code to restore consis-
tency. Designing such a mechanism is a research challenge.

A major research challenge is to design system support
that eliminates implicit, non-local control flow on power
failures. The main idea is to make control flow explicit and
provide strong consistency guarantees at certain program
points. Task- or transaction-based programming interfaces
are a good starting point. Task boundaries are natural control-
flow targets, and consistency at task boundaries would be a
useful guarantee. Programming and tool support could help
programmers place tasks to minimize overhead and reason
about implicit control flow and consistency.

Programming support. The consistency problems we
discuss often stem from violations of expected atomicity
and ordering properties. One avenue for research is to create
tools that identify potential consistency problems so that
programmers can find and fix them. We envision support in
the type system or compiler to address these problems and
produce code that is correct by construction. Dealing with
concurrency problems in general is often too hard for such
verification efforts to handle, but energy-harvesting devices
exhibit a particular kind of concurrency. Verifying useful
correctness properties in this restricted domain is a more
achievable research goal than doing so in the general case.

An alternative approach is to require all code to be idempo-
tent, eliminating the consistency problem. Requiring idempo-
tence hinders stateful, long-running applications by limiting
their use of nonvolatile storage.

Concurrency. These consistency problems described
above resemble those in other concurrent systems, such as
multithreading, distributed systems, and databases. Borrow-
ing ideas from these areas may be profitable, but it is unlikely
that prior solutions will apply directly for several reasons. En-
ergy harvesting systems experience failures as the common
case; most prior work assumes failures are rare. Scarce energy
means devices can afford little or no power overhead to deal
with correctness, precluding simple ports of prior approaches
like transactions [9] or log/replay [8]. Additionally, the com-
bination of periodic checkpointing and pervasive persistence
creates new problems, such as NV-external consistency, that
have no clear solution. Further study will likely expose other
previously overlooked complications.

System support for correctness and reliability in energy-
harvesting devices can make them accessible to workaday
developers. This paper merely scratches the surface of this
timely and rich problem area.

Acknowledgments
We thank the anonymous reviewers and Dan Grossman
for feedback. This work was supported in part by C-FAR,
one of six centers of STARnet, a Semiconductor Research
Corporation program sponsored by MARCO and DARPA.

References
[1] K. Bailey, L. Ceze, S. D. Gribble, and H. M. Levy. Operating

system implications of fast, cheap, non-volatile memory. In
Workshop on Hot Topics in Operating Systems (HotOS), May
2011.

[2] J. Coburn, A. M. Caulfield, A. Akel, L. M. Grupp, R. K. Gupta,
R. Jhala, and S. Swanson. NV-Heaps: making persistent objects
fast and safe with next-generation, non-volatile memories. In
ASPLOS, Mar. 2011.

[3] S. Gollakota, M. S. Reynolds, J. R. Smith, and D. J. Wetherall.
The emergence of RF-powered computing. Computer, 47(1),
2014.

[4] H. Jayakumar, A. Raha, and V. Raghunathan. QuickRecall:
A low overhead HW/SW approach for enabling computations
across power cycles in transiently powered computers. In Int’l
Conf. on VLSI Design and Int’l Conf. on Embedded Systems,
Jan. 2014.

[5] R.-S. Liu, D.-Y. Shen, C.-L. Yang, S.-C. Yu, and C.-Y. M.
Wang. NVM duet: Unified working memory and persistent
store architecture. In ASPLOS, Mar. 2014.

[6] B. Randell. System structure for software fault tolerance. In
Programming Methodology, pages 362–387. Springer New
York, 1978.

[7] B. Ransford, J. Sorber, and K. Fu. Mementos: System support
for long-running computation on RFID-scale devices. In
ASPLOS, Mar. 2011.

[8] M. Rosenblum and J. K. Ousterhout. The design and imple-
mentation of a log-structured file system. ACM Trans. Comput.
Syst., 10(1):26–52, Feb. 1992.

[9] N. Shavit and D. Touitou. Software transactional memory. In
Proceedings of the Fourteenth Annual ACM Symposium on
Principles of Distributed Computing, pages 204–213. ACM,
1995.

[10] K. Strauss and D. Burger. What the future holds for solid-state
memory. Computer, 47(1), 2014.

[11] H. Volos, A. J. Tack, and M. M. Swift. Mnemosyne:
lightweight persistent memory. In ASPLOS, Mar. 2011.

[12] J. Zhao, S. Li, D. H. Yoon, Y. Xie, and N. P. Jouppi. Kiln: Clos-
ing the performance gap between systems with and without
persistence support. In MICRO, Dec. 2013.

	Introduction
	Broken Time Machines
	Research Challenges

