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Abstract
We present Grappa, a modern take on software distributed
shared memory (DSM) for in-memory data-intensive ap-
plications. Grappa enables users to program a cluster as
if it were a single, large, non-uniform memory access
(NUMA) machine. Performance scales up even for ap-
plications that have poor locality and input-dependent
load distribution. Grappa addresses deficiencies of previ-
ous DSM systems by exploiting application parallelism,
trading off latency for throughput. We evaluate Grappa
with an in-memory MapReduce framework (10⇥ faster
than Spark [74]); a vertex-centric framework inspired by
GraphLab (1.33⇥ faster than native GraphLab [48]); and
a relational query execution engine (12.5⇥ faster than
Shark [31]). All these frameworks required only 60-690
lines of Grappa code.

1 Introduction
Data-intensive applications (e.g., ad placement, social
network analysis, PageRank, etc.) make up an important
class of large-scale computations. Typical hardware com-
puting infrastructures for these applications are a collec-
tion of multicore nodes connected via a high-bandwidth
commodity network (a.k.a. a cluster). Scaling up per-
formance requires careful partitioning of data and com-
putation; i.e., programmers have to reason about data
placement and parallelism explicitly, and for some ap-
plications, such as graph analytics, partitioning is diffi-
cult. This has led to a diverse ecosystem of frameworks—
MapReduce [26], Dryad [43], and Spark [74] for data-
parallel applications, GraphLab [48] for certain graph-
based applications, Shark [31] for relational queries, etc.
They ease development by specializing to algorithmic
structure and dynamic behavior; however, applications
that do not fit well into one particular model suffer in
performance.

Software distributed shared memory (DSM) systems
provide shared memory abstractions for clusters. Histor-
ically, these systems [15, 19, 45, 47] performed poorly,
largely due to limited inter-node bandwidth, high inter-
node latency, and the design decision of piggybacking on
the virtual memory system for seamless global memory
accesses. Past software DSM systems were largely in-
spired by symmetric multiprocessors (SMPs), attempting
to scale that programming mindset to a cluster. How-
ever, applications were only suitable for them if they
exhibited significant locality, limited sharing and coarse-
grain synchronization—a poor fit for many modern data-

analytics applications. Recently there has been a re-
newed interest in DSM research [27, 51], sparked by the
widespread availability of high-bandwidth low-latency
networks with remote memory access (RDMA) capabil-
ity.

In this paper we describe Grappa, a software DSM sys-
tem for commodity clusters designed for data-intensive
applications. Grappa is inspired by the Tera MTA [10,11],
a custom hardware-based system. Like the MTA, instead
of relying on locality to reduce the cost of memory ac-
cesses, Grappa depends on parallelism to keep processor
resources busy and hide the high cost of inter-node com-
munication. Grappa also adopts the shared-memory, fine-
grained parallel programming mindset from the MTA. To
support fine-grained messaging like the MTA, Grappa in-
cludes an overlay network that combines small messages
together into larger physical network packets, thereby
maximizing the available bisection bandwidth of com-
modity networks. This communication layer is built in
user-space, utilizing modern programming language fea-
tures to provide the global address space abstraction. Effi-
ciencies come from supporting sharing at a finer granu-
larity than a page, avoiding the page-fault trap overhead,
and enabling compiler optimizations on global memory
accesses.

The runtime system is implemented in C++ for a clus-
ter of x86 machines with an InfiniBand interconnect, and
consists of three main components: a global address space
(§3.1), lightweight user-level tasking (§3.2), and an ag-
gregating communication layer (§3.3). We demonstrate
the generality and performance of Grappa as a common
runtime by implementing three domain-specific platforms
on top of it: a simple in-memory MapReduce frame-
work; a vertex-centric API (i.e. like GraphLab); and a
relational query processing engine. Comparing against
GraphLab itself, we find that a simple, randomly parti-
tioned graph representation on Grappa performs 2.5⇥
better than GraphLab’s random partitioning and 1.33⇥
better than their best partitioning strategy, and scales com-
parably out to 128 cluster nodes. The query engine built
on Grappa, on the other hand, performs 12.5⇥ faster than
Shark on a standard benchmark suite. The flexibility and
efficiency of the Grappa shared-memory programming
model allows these frameworks to co-exist in the same ap-
plication and to exploit application-specific optimizations
that do not fit within any existing model.

The next section provides an overview of how data-
intensive application frameworks can easily and effi-



ciently map to a shared-memory programming model.
§3 describes the Grappa system. §4 presents a quantitive
evaluation of the Grappa runtime. §5 describes related
work, and §6 concludes.

2 Data-Intensive Application Frameworks
Analytics frameworks—such as MapReduce, graph pro-
cessing and relational query execution—are typically im-
plemented for distributed private memory systems (clus-
ters) to achieve scale-out performance. While implement-
ing these frameworks in a shared-memory system would
be straightforward, this has generally been avoided be-
cause of scalability concerns. We argue that modern
data-intensive applications have properties that can be
exploited to make these frameworks run efficiently and
scale well on distributed shared memory systems.

Figure 1 shows a minimal example of implementing a
“word count”-like application in actual Grappa DSM code.
The input array, chars, and output hash table, cells, are
distributed over multiple nodes. A parallel loop over the
input array runs on all nodes, hashing each key to its
cell and incrementing the corresponding count atomically.
The syntax and details will be discussed in later sections,
but the important thing to note is that it looks similar to
plain shared-memory code, yet spans multiple nodes and,
as we will demonstrate in later sections, scales efficiently.

Here we describe how three data-intensive computing
frameworks map to a DSM, followed by a discussion
of the challenges and opportunities they provide for an
efficient implementation:

MapReduce. Data parallel operations like map and
reduce are simple to think of in terms of shared memory.
Map is simply a parallel loop over the input (an array or
other distributed data structure). It produces intermediate
results into a hash table similar to that in Figure 1. Reduce
is a parallel loop over all the keys in the hash table.

Vertex-centric. GraphLab/PowerGraph is an exam-
ple of a vertex-centric execution model, designed for im-
plementing machine-learning and graph-based applica-
tions [35, 48]. Its three-phase gather-apply-scatter (GAS)
API for vertex programs enables several optimizations
pertinent to natural graphs. Such graphs are difficult to
partition well, so algorithms traversing them exhibit poor
locality. Each phase can be implemented as a parallel
loop over vertices, but fetching each vertex’s neighbors
results in many fine-grained data requests.

Relational query execution. Decision support, often
in the form of relational queries, is an important domain
of data-intensive workloads. All data is kept in hash
tables stored in a DSM. Communication is a function of
inserting into and looking up in hash tables. One parallel
loop builds a hash table, followed by a second parallel
loop that filters and probes the hash table, producing
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Figure 2: Grappa design overview

the results. These steps rely heavily on consistent, fine-
grained updates to hash tables.
The key challenges in implementing these frameworks on
a DSM are:

Small messages. Programs written to a shared mem-
ory model tend to access small pieces of data, which
when executing on a DSM system lead to small inter-node
messages. What were load or store operations become
complex transactions involving small messages over the
network. Conversely, programs written using a message
passing library, such as MPI, expose this complexity to
programmers, and hence encourage them to optimize it.

Poor locality. As previously mentioned, data-intensive
applications often exhibit poor locality. For example,
how much communication GraphLab’s gather and scatter
operations conduct is a function of the graph partition.
Complex graphs frustrate even the most advanced parti-
tioning schemes [35]. This leads to poor spatial locality.
Moreover, which vertices are accessed varies from itera-
tion to iteration. This leads to poor temporal locality.

Need for fine-grain synchronization. Typical data-
parallel applications offer coarse-grained concurrency
with infrequent synchronization—e.g., between phases
of processing a large chunk of data. Conversely, graph-
parallel applications exhibit fine-grain concurrency with
frequent synchronization—e.g., when done processing
work associated with a single vertex. Therefore, for a
DSM solution to be general, it needs to support fine-grain
synchronization efficiently.

Fortunately, data-intensive applications have properties
that can be exploited to make DSMs efficient: their abun-
dant data parallelism enables high degrees of concurrency;
and their performance depends not on the latency of exe-
cution of any specific parallel task/thread, as it would in
for example a web server, but rather on the aggregate exe-
cution time (i.e., throughput) of all tasks/threads. In the
next section we explore how these application properties
can be exploited to implement an efficient DSM.

3 Grappa Design
Figure 2 shows an overview of Grappa’s DSM system. Be-
fore describing the Grappa system in detail, we describe
its three main components:
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// distributed input array
GlobalAddress<char> chars = load_input();

// distributed hash table:
using Cell = std::map<char,int>;
GlobalAddress<Cell> cells = global_alloc<Cell>(ncells);

forall(chars, nchars, [=](char& c) {
  // hash the char to determine destination
  size_t idx = hash(c) % ncells;
  delegate(&cells[idx], [=](Cell& cell)
  { // runs atomically
    if (cell.count(c) == 0) cell[c] = 1;
    else cell[c] += 1;
  });
});

hash("i")

Figure 1: “Character count” with a simple hash table implemented using Grappa’s distributed shared memory.
Distributed shared memory. The DSM system pro-

vides fine-grain access to data anywhere in the system.
Every piece of global memory is owned by a particular
core in the system. Access to data on remote nodes is
provided by delegate operations that run on the owning
core. Delegate operations may include normal memory
operations such as read and write as well as synchronizing
operations such as fetch-and-add [36]. Due to delegation,
the memory model offered is similar to what underpins
C/C++ [17, 44], so it is familiar to programmers.

Tasking system. The tasking system supports
lightweight multithreading and global distributed work-
stealing—tasks can be stolen from any node in the system,
which provides automated load balancing. Concurrency
is expressed through cooperatively-scheduled user-level
threads. Threads that perform long-latency operations
(i.e., remote memory access) automatically suspend while
the operation is executing and wake up when the operation
completes.

Communication layer. The main goal of our commu-
nication layer is to aggregate small messages into large
ones. This process is invisible to the application pro-
grammer. Its interface is based on active messages [69].
Since aggregation and deaggregation of messages needs
to be very efficient, we perform the process in parallel and
carefully use lock-free synchronization operations. For
portability, we use MPI [50] as the underlying messaging
library as well as for process setup and tear down.

3.1 Distributed Shared Memory
Below we describe how Grappa implements a shared
global address space and the consistency model it offers.

3.1.1 Addressing Modes

Local memory addressing. Applications written for
Grappa may address memory in two ways: locally and
globally. Local memory is local to a single core within a
node in the system. Accesses occur through conventional
pointers. Applications use local accesses for a number
of things in Grappa: the stack associated with a task, ac-
cesses to global memory from the memory’s home core,
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Figure 3: Using global addressing for graph layout.
and accesses to debugging infrastructure local to each
system node. Local pointers cannot access memory on
other cores, and are valid only on their home core.

Global memory addressing. Grappa allows any local
data on a core’s stacks or heap to be exported to the global
address space to be made accessible to other cores across
the system. This uses a traditional PGAS (partitioned
global address space [30]) addressing model, where each
address is a tuple of a rank in the job (or global process
ID) and an address in that process.

Grappa also supports symmetric allocations, which al-
locates space for a copy (or proxy) of an object on every
core in the system. The behavior is identical to perform-
ing a local allocation on all cores, but the local addresses
of all the allocations are guaranteed to be identical. Sym-
metric objects are often treated as a proxy to a global
object, holding local copies of constant data, or allowing
operations to be transparently buffered. A separate pub-
lication [41] describes how this was used to implement
Grappa’s synchronized global data structures, including
vector and hash map.

Putting it all together. Figure 3 shows an example of
how global, local and symmetric heaps can all be used
together for a simple graph data structure. In this example,
vertices are allocated from the global heap, automatically
distributing them across nodes. Symmetric pointers are
used to access local objects which hold information about
the graph, such as the base pointer to the vertices, from
any core without communication. Finally, each vertex
holds a vector of edges allocated from their core’s local
heap, which other cores can access by going through the
vertex.
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GlobalAddress<int> A = global_alloc<int>(N);

forall(0, N, [A](int i) {
  int j = random(i) % N;
  delegate( A + j, [](int& A_j){
    A_j += 1;
  });
});

[](int& A_j){
 A_j += 1;
}

move execution

notify completion

Node 0 Node 2Node 1

Figure 4: Grappa delegate example.
3.1.2 Delegate Operations

Access to Grappa’s distributed shared memory is provided
through delegate operations, which are short operations
performed at the memory location’s home node. When
the data access pattern has low locality, it is more efficient
to modify the data on its home core rather than bringing a
copy to the requesting core and returning a modified ver-
sion. Delegate operations [49, 53] provide this capability.
While delegates can trivially implement read/write oper-
ations to global memory, they can also implement more
complex read-modify-write and synchronization opera-
tions (e.g., fetch-and-add, mutex acquire, queue insert).
Figure 4 shows an example.

Delegate operations must be expressed explicitly to
the Grappa runtime, a change from the traditional DSM
model. In practice, even programmers using implicit
DSMs had to work to express and exploit locality to ob-
tain performance. In other work we have developed a
compiler [40] that automatically identifies and extracts
productive delegate operations from ordinary code.

A delegate operation can execute arbitrary code pro-
vided it does not lead to a context switch. This guarantees
atomicity for all delegate operations. To avoid context
switches, a delegate must only touch memory owned by
a single core. A delegate is always executed at the home
core of the data addresses it touches. Given these restric-
tions, we can ensure that delegate operations for the same
address from multiple requesters are always serialized
through a single core in the system, providing atomic-
ity with strong isolation. A side benefit is that atomic
operations on data that are highly contended are faster.
When programmers want to operate on data structures
spread across multiple nodes, accesses must be expressed
as multiple delegate operations along with appropriate
synchronization operations.

3.1.3 Memory Consistency Model

Accessing global memory though delegate operations al-
lows us to provide a familiar memory model. All synchro-
nization is done via delegate operations. Since delegate
operations execute on the home core of their operand in
some serial order and only touch data owned by that single
core, they are guaranteed to be globally linearizable [38],
with their updates visible to all cores across the system

in the same order. In addition, only one synchronous
delegate will be in flight at a time from a particular task,
i.e., synchronization operations from a particular task are
not subject to reordering. Moreover, once one core is
able to see an update from a synchronous delegate, all
other cores are too. Consequently, all synchronization
operations execute in program order and are made visi-
ble in the same order to all cores in the system. These
properties are sufficient to guarantee a memory model
that offers sequential consistency for data-race-free pro-
grams [5], which is what underpins C/C++ [17, 44]. The
synchronous property of delegates provides a clean model
but is restrictive: we discuss asynchronous operations
within the next section.

3.2 Tasking System
Each hardware core has a single operating system thread
pinned to it; all Grappa code runs in these threads. The
basic unit of execution in Grappa is a task. When a task is
ready to execute, it is mapped to a user-level worker thread
that is scheduled within an operating system thread; we
refer to these as workers to avoid confusion. Scheduling
between tasks is carried out entirely in user-mode without
operating system intervention.

Tasks. Tasks are specified by a closure (also referred to
as a “functor” or “function object” in C++) that holds both
code to execute and initial state. The closure can be speci-
fied with a function pointer and explicit arguments, a C++
struct that overloads the parentheses operator, or a C++11
lambda construct. These objects, typically small (⇠ 32
bytes), hold read-only values such as an iteration index
and pointers to common data or synchronization objects.
Task closures can be serialized and transported around
the system, and are eventually executed by a worker.

Workers. Workers execute application and system
(e.g., communication) tasks. A worker is simply a collec-
tion of status bits and a stack, allocated at a particular core.
When a task is ready to execute it is assigned to a worker,
that executes the task closure on its own stack. Once a
task is mapped to a worker it stays with that worker until
it finishes.

Scheduling. During execution, a worker yields control
of its core whenever performing a long-latency operation,
allowing the processor to remain busy while waiting for
the operation to complete. In addition, a programmer
can direct scheduling explicitly. To minimize context-
switch overhead, the Grappa scheduler operates entirely
in user-space and does little more than store state of one
worker and load that of another. When a task encounters
a long-latency operation, its worker is suspended and
subsequently woken when the operation completes.

Each core in a Grappa system has its own independent
scheduler. The scheduler has a collection of active work-
ers ready to execute called the ready worker queue. Each
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scheduler also has three queues of tasks waiting to be
assigned a worker. The first two run user tasks: a public
queue of tasks that are not bound to a core yet, and a
private queue of tasks already bound to the core where the
data they touch is located. The third is a priority queue
scheduled according to task-specific deadline constraints;
this queue manages high priority system tasks, such as
periodically servicing communication requests.

Context switching. Grappa context switches between
workers non-preemptively. As with other cooperative
multithreading systems, we treat context switches as func-
tion calls, saving and restoring only the callee-saved state
as specified in the x86-64 ABI [12] rather than the full
register set required for a preemptive context switch. This
requires 62 bytes of storage.

Grappa’s scheduler is designed to support a very large
number of concurrently-active workers—so large, in fact,
that their combined context data will not fit in cache. In or-
der to minimize unnecessary cache misses on context data,
the scheduler explicitly manages the movement of context
data into the cache. To accomplish this, we establish a
pipeline of ready worker references in the scheduler. This
pipeline consists of ready-unscheduled, ready-scheduled,
and ready-resident stages. When context prefetching is
on, the scheduler is only ever allowed to run workers that
are ready-resident; all other workers are assumed to be
out-of-cache. The examined part of the ready queue itself
must also be in cache. In a FIFO schedule, the head of the
queue will always be in cache due to its spatial locality.
Other schedules are possible as long as the amount of data
they need to examine to make a decision is independent
of the total number of workers.

When a worker is signaled, its reference is marked
ready-unscheduled. Every time the scheduler runs, one of
its responsibilities is to pick a ready-unscheduled worker
to transition to ready-scheduled: it issues a software
prefetch to start moving the task toward L1. A worker
needs its metadata (one cache line) and its private working
set. Determining the exact working set might be difficult,
but we find that approximating the working set with the
top 2-3 cache lines of the stack is the best naive heuristic.
The worker data is ready-resident when it arrives in cache.
Since the arrival of a prefetched cache line is generally
not part of the architecture, we must determine the latency
from profiling.

At our standard operating point on our cluster (⇡1,000
workers), context switch time is on the order of 50 ns. As
we add workers, the time increases slowly, but levels off:
with 500,000 workers context switch time is around 75
ns. Without prefetching, context switching is limited by
memory access latency—approximately 120 ns for 1,000
workers. Conversely, with prefetching on, context switch-
ing rate is limited by memory bandwidth—we determine
this by calculating total data movement based on switch

rate and cache lines per switch in a microbenchmark. As a
reference point, for the same yield test using kernel-level
Pthreads on a single core, the switch time is 450ns for a
few threads and 800ns for 1000–32000 threads.

Expressing parallelism. The Grappa API supports
spawning individual tasks, with optional data locality
constraints. These tasks may run as full-fledged workers
with a stack and the ability to block, or they may be
asynchronous delegates, which like delegate operations
execute non-blocking regions of code atomically on a
single core’s memory. Asynchronous delegates are treated
as task spawns in the memory model.

For better programmability, tasks are automatically
generated from parallel loop constructs, as in Figure 1.
Grappa’s parallel loops spawn tasks using a recursive
decomposition of iterations, similar to Cilk’s cilk for con-
struct [16], and TBB’s parallel for [59]. This generates
a logarithmically-deep tree of tasks, stopping to execute
the loop body when the number of iterations is below a
user-definable threshold.

Grappa loops can iterate over an index space or over a
region of shared memory. In the former case, tasks are
spawned with no locality constraints, and may be stolen
by any core in the system. In the latter case, tasks are
bound to the home core of the piece of memory on which
they are operating so that the loop body may optimize for
this locality, if available. The local region of memory is
still recursively decomposed so that if a particular loop
iteration’s task blocks, other iterations may run concur-
rently on the core.

3.3 Communication Support
Grappa’s communication layer has two components: a
user-level messaging interface based on active messages,
and a network-level transport layer that supports request
aggregation for better communication bandwidth.

Active message interface. At the upper (user-level)
layer, Grappa implements asynchronous active mes-
sages [69]. Our active messages are simply a C++11
lambda or other closure. We take advantage of the fact
that our homogeneous cluster hardware runs the same
binary in every process: each message consists of a
template-generated deserializer pointer, a byte-for-byte
copy of the closure, and an optional data payload.

Message aggregation. Since communication is very
frequent in Grappa, aggregating and sending messages
efficiently is very important. To achieve that, Grappa
makes careful use of caches, prefetching, and lock-free
synchronization operations.

Figure 5 shows the aggregation process. Cores keep
their own outgoing message lists, with as many entries as
the number of system cores in a Grappa system. These
lists are accessible to all cores in a Grappa node to allow
cores to peek at each other’s message lists. When a task
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Figure 5: Message aggregation process.
sends a message, it allocates a buffer from a pool, deter-
mines the destination system node, writes the message
contents into the buffer, and links the buffer into the corre-
sponding outgoing list. These buffers are referenced only
twice for each message sent: once when the message is
created, and (much later) when the message is serialized
for transmission. The pool allocator prefetches the buffers
with the non-temporal flag to minimize cache pollution.

Each processing core in a given system node is respon-
sible for aggregating and sending the resulting messages
from all cores on that node to a set of destination nodes.
Cores periodically execute a system task that examines
the outgoing message lists for each destination node for
which the core is responsible; if the list is long enough
or a message has waited past a time-out period, all mes-
sages to a given destination system node from that source
system node are sent by copying them to a buffer visible
to the network card. Actual message transmission can be
done purely in user-mode using MPI, which in turn uses
RDMA.

The final message assembly process involves manipu-
lating several shared data-structures (the message lists),
so it uses CAS (compare-and-swap) operations to avoid
high synchronization costs. This traversal requires careful
prefetching because most of the outbound messages are
not in the processor cache at this time (recall that a core
can be aggregating messages originating from other cores
in the same node). Note that we use a per-core array of
message lists that is only periodically modified across
processor cores, having experimentally determined that
this approach is faster (sometimes significantly) than a
global per-system node array of message lists.

Once the remote system node has received the message
buffer, a management task is spawned to manage the
unpacking process. The management task spawns a task
on each core at the receiving system to simultaneously
unpack messages destined for that core. Upon completion,
these unpacking tasks synchronize with the management
task. Once all cores have processed the message buffer,
the management task sends a reply to the sending system
node indicating the successful delivery of the messages.

3.3.1 Why not just use native RDMA support?

Given the increasing availability and decreasing cost of
RDMA-enabled network hardware, it would seem log-

ical to use this hardware to implement Grappa’s DSM.
Figure 6 shows the performance difference between na-
tive RDMA atomic increments and Grappa atomic incre-
ments using the GUPS cluster-wide random access bench-
mark using the cluster described in §4. The cluster has
Mellanox ConnectX-2 40Gb InfiniBand cards connected
through a QLogic switch with no oversubscription. The
RDMA setting of the experiment used the network card’s
native atomic fetch-and-increment operation, and issued
increments to the card in batches of 512. The Grappa
setting issued delegate increments in a parallel for loop.
Both settings perform increments to random locations in a
32 GB array of 64-bit integers distributed across the clus-
ter. Figure 6(left) shows how aggregation allows Grappa
to exceed the performance of the card by 25⇥ at 128
nodes. We measured the effective bisection bandwidth of
the cluster as described in [39]: for GUPS, performance
is limited by memory bandwidth during aggregation, and
uses ⇠ 40% of available bisection bandwidth.

Figure 6(right) illustrates why using RDMA directly
is not sufficient. The data also shows that MPI over In-
finiBand has negligible overhead. Our cluster’s cards are
unable to push small messages at line rate into the net-
work: we measured the peak RDMA performance of our
cluster’s cards to be 3.2 million 8-byte writes per second,
when the wire-rate limit is over 76 million [42]. We be-
lieve this limitation is primarily due to the latency of the
multiple PCI Express round trips necessary to issue one
operation; a similar problem was studied in [34]. Fur-
thermore, RDMA network cards have severely limited
support for synchronization with the CPU [27, 51]. Fi-
nally, framing overheads can be large: InfiniBand 8-byte
RDMA writes moves 50 bytes on the wire; Ethernet-
based RDMA using RoCE moves 98 bytes. Work is
ongoing to improve network card small message perfor-
mance [1, 4, 28, 34, 55, 57, 61, 68]: even if native small
message performance improves in future hardware, our
aggregation support will still be useful to minimize cache
line movement, PCI Express round trips, and other mem-
ory hierarchy limitations.

3.4 Fault tolerance discussion
A number of recent “big data” workload studies [22, 60,
62] suggest that over 90 percent of current analytics jobs
require less than one terabyte of input data and run for
less than one hour. We designed Grappa to support this
size of workload on medium-scale clusters, with tens to
hundreds of nodes and a few terabytes of main memory.
At this scale, the extreme fault tolerance found in systems
like Hadoop is largely wasted — e.g., assuming a per-
machine MTBF of 1 year, we would estimate the MTBF
of our 128-node cluster to be 2.85 days.

We could add checkpoint/restart functionality to
Grappa, either natively or using a standard HPC library
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Figure 6: On the left, random updates to a billion-integer
distributed array with the GUPS benchmark. On the right,
ping-pong bandwidth measured between two nodes.

[29]. Writing a checkpoint would take on the order of
minutes; for instance, our cluster can write all 8 TB of
main memory to its parallel filesystem in approximately
10 minutes. It is important to balance the cost of taking
a checkpoint with the work lost since the last checkpoint
in the event of a failure. We can approximate the opti-
mum checkpoint interval using [73]; assuming a check-
point time of 10 minutes and a per-machine MTBF of 1
year, we should take checkpoints every 4.7 hours. These
estimates are similar to what Low et al. measured for
Graphlab’s checkpoint mechanism in [48]. In this regime,
it is likely cheaper to restart a failed job than it is to pay
the overhead of taking checkpoints and recovering from a
failure.

Given these estimates, we chose not to implement fault
tolerance in this work. Adding more sophisticated fault
tolerance to Grappa for clusters with thousands of nodes
is an interesting area of future work.

4 Evaluation
We implemented Grappa in C++ for the Linux operating
system. The core runtime system system is 17K lines
of code. We ran experiments on a cluster of AMD Inter-
lagos processors with 128 nodes. Nodes have 32 cores
operating at 2.1GHz, spread across two sockets, 64GB
of memory, and 40Gb Mellanox ConnectX-2 InfiniBand
network cards. Nodes are connected via a QLogic In-
finiBand switch with no oversubscription. We used a
stock OS kernel and device drivers. The experiments
were run in a machine without administrator access or
special privileges. GraphLab and Spark communicated
using IP-over-InfiniBand in Connected mode.

4.1 Vertex-centric Programs on Grappa
We implemented a vertex-centric programming frame-
work in Grappa with most of the same core functionality
as GraphLab [35, 48] using the graph data structure pro-
vided by the Grappa library (Figure 3). Unlike GraphLab
we do not focus on intelligent partitioning, instead choos-

ing a simple random placement of vertices to cores. Edges
are stored co-located on the same core with vertex data.
Using this graph representation, we implement a subset
of GraphLab’s synchronous engine, including the delta
caching optimization, in ⇠60 lines of Grappa code. Par-
allel iterators are defined over the vertex array and over
each vertex’s outgoing edge list. Given our graph struc-
ture, we can efficiently support gather on incoming edges
and scatter on outgoing edges. Users of our Vertex-centric
Grappa framework specify the gather, apply, and scatter
operations in a “vertex program” structure. Vertex pro-
gram state is represented as additional data attached to
each vertex. The synchronous engine consists of several
parallel forall loops executing the gather, apply, and
scatter phases within an outer “superstep” loop until all
vertices are inactive.

We implemented three graph analytics applications
from GraphBench [3] using vertex program definitions
equivalent to GraphLab’s: PageRank, Single Source
Shortest Path (SSSP), and Connected Components (CC).
In addition, we implemented a simple Breadth-first search
(BFS) application in the spirit of the Graph500 bench-
mark [37], which finds a “parent” for each vertex with a
given source. The implementation in the GraphLab API
is similar to the SSSP vertex program.

4.1.1 Performance

To evaluate Grappa’s Vertex-centric framework imple-
mentation, we ran each application on the Twitter fol-
lower graph [46] (41 M vertices, 1 B directed edges) and
the Friendster social network [72] (65 M vertices, 1.8 B
undirected edges). For each we run to convergence—for
PageRank we use GraphLab’s default threshold criteria—
resulting in the same number of iterations for each. Addi-
tionally, for PageRank we ran with delta caching enabled,
as it proved to perform better. For Grappa we use the no-
replication graph structure with random vertex placement;
for GraphLab, we show results for random partitioning
and the current best partitioning strategy: “PDS” which
computes the “perfect difference set”, but can only be run
with p2 + p + 1 (where p is prime) nodes. Most of the
comparisons are done at 31 nodes for this reason.

Figure 7a depicts performance results at 31 nodes, nor-
malized to Grappa’s execution time. We can see that
Grappa is faster than random partitioning on all the bench-
marks (on average 2.57⇥), and 1.33⇥ faster than the best
partitioning, despite not replicating the graph at all. Both
implementations of PageRank issue application-level re-
quests on the order of 32 bytes (mostly communicating
updated rank values). However, since these would per-
form terribly on the network, both systems aggregate
updates into larger wire-level messages. Grappa’s per-
formance exceeds that of GraphLab primarily because it
does this faster.
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Figure 7: Performance characterization of Grappa’s Vertex-centric framework (a) shows time to converge (same number
of iterations) normalized to Grappa, on the Twitter and Friendster datasets. (b) shows scaling results for PageRank out
to 128 nodes—Friendster and Twitter measure strong scaling, and weak scaling is measured on synthetic power-law
graphs scaled proportionally with nodes. (c) On top, cluster-wide message rates (average per iteration) while computing
PageRank. On the bottom, GUPS message rates for GraphLab, Spark, and Grappa on 31 nodes. Grappa is shown using
both TCP-based and RDMA-based configuration, with message prefetching on and off.

Figure 7c(bottom) explores this difference using the
GUPS benchmark from §3.3.1. All systems send 32-
byte updates to random nodes which then update a 64-
bit word in memory: this experiment models only the
communication of PageRank and not the activation of
vertices, etc. For GraphLab and Spark, the messaging
uses TCP-over-IPoIB and the aggregators make 64KB
batches (GraphLab also uses MPI, but for job startup
only). At 31 nodes, GraphLab’s aggregator achieves 0.14
GUPS, while Grappa achieves 0.82 GUPS. Grappa’s use
of RDMA accounts for about half of that difference; when
Grappa uses MPI-over-TCP-over-IPoIB it achieves 0.30
GUPS. The other half comes from Grappa’s prefetching,
more efficient serialization, and other messaging design
decisions. The Spark result is an upper bound obtained
by writing directly to Spark’s java.nio-based messaging
API rather than Spark’s user-level API.

During the PageRank computation, Grappa’s unsophis-
ticated graph representation sends 2⇥ as many messages
as GraphLab’s replicated representation. However, as can
be seen in Figure 7c(top), Grappa sends these messages
at up to 4⇥ the rate of GraphLab over the bulk of its exe-
cution. At the end of the execution when the number of
active vertices is low, both systems’ message rates drop,
but Grappa’s simpler graph representation allows it to
execute these iterations faster as well. Overall, this leads
to a 2⇥ speedup.

Figure 8 demonstrates the connection between concur-
rency and aggregation over time while executing PageR-
ank. We see that at each iteration, the number of concur-
rent tasks spikes as scatter delegates are performed on

outgoing edges, which leads to a corresponding spike in
bandwidth due to aggregating the many concurrent mes-
sages. At these points, Grappa achieves roughly 1.1 GB/s
per node, which is 47% of peak bisection bandwidth for
large packets discussed in §3.3.1, or 61% of the band-
width for 80 kB messages, the average aggregated size.
This discrepancy is due to not being able to aggregate
packets as fast as the network can send them, but is still
significantly better than unaggregated bandwidth.

Figure 7b(left) shows strong scaling results on both
datasets. As we can see, scaling is poor beyond 32 nodes
for both platforms, due to the relatively small size of the
graphs—there is not enough parallelism for either system
to scale on this hardware. To explore how Grappa fares
on larger graphs, we show results of a weak scaling exper-
iment in Figure 7b(right). This experiment runs PageR-
ank on synthetic graphs generated using Graph500’s Kro-
necker generator, scaling the graph size with the number
of nodes, from 200M vertices, 4B edges, up to 2.1B ver-
tices, 34B edges. Runtime is normalized to show distance
from ideal scaling (horizontal line), showing that scaling
deteriorates less than 30% at 128 nodes.

4.2 Relational queries on Grappa

We used Grappa to build a distributed backend to Raco, a
relational algebra compiler and optimization framework
[58]. Raco supports a variety of relational query language
frontends, including SQL, Datalog, and an imperative
language, MyriaL. It includes an extensible relational
algebra optimizer and various intermediate query plan
representations.
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Figure 8: Grappa PageRank execution over time on 32
nodes. The top shows the total number of concurrent tasks
(including delegate operations), over the 85 iterations,
peaks diminishing as fewer vertices are being updated.
The bottom shows message bandwidth per node, which
correlates directly with the concurrency at each time step,
compared against the peak bandwidth, and the bandwidth
for the given message size.

We compare performance of our system to that of
Shark, a fast implementation of Hive (SQL-like), built
upon Spark. We chose this comparison point because
Shark is optimized for in-memory execution and performs
competitively with parallel databases [71].

Our particular approach for the Grappa backend to
Raco is source-to-source translation. We generate
foralls for each pipeline in the physical query plan.
We extend the code generation approach for serial code
in [54] to generating parallel shared memory code. The
generated code is sent through a normal C++11 compiler.

All data structures used in query execution (e.g. hash
tables for joins) are globally distributed and shared. While
this a departure from the shared-nothing architecture of
nearly all parallel databases, the locality-oriented execu-
tion model of Grappa makes the execution of the query
virtually identical to that of traditional designs. We ex-
pect (and later demonstrate) that Grappa will excel at hash
joins, given that it achieves high throughput on random
access.

Implementing the parallel Grappa code generation was
a relatively simple extension of the generator for serial
C++ code that we use for testing Raco. It required less
than 90 lines of template C++/Grappa code and 600 lines
of support and data structure C++/Grappa code to imple-
ment conjunctive queries, including two join implementa-
tions.

4.2.1 Performance

We focus on workloads that can be processed in memory,
since storage is out of scope for this work. For Grappa, we
scan all tables into distributed arrays of rows in memory,
then time the query processing. To ensure all timed pro-
cessing in Shark is done in memory, we use the methodol-
ogy that Shark’s developers use for benchmarking [2]. In

particular, all input tables are cached in memory and the
output is materialized to an in-memory table. The number
of reducer tasks for shuffles was set to 3 per Spark worker,
which balances overhead and load balance. Each worker
JVM was assigned 52GB of memory.

We ran conjunctive queries from SP2Bench [63]. The
queries in this benchmark involve several joins, which
makes it interesting for evaluating parallel in-memory sys-
tems. We show results on 16 nodes (we found Shark failed
to scale beyond 16 nodes on this data set) in Figure 9a.
Grappa has a geometric mean speedup of 12.5⇥ over
Shark. The benchmarks vary in performance due to dif-
ferences in magnitude of communication and output size.

There are many differences between the two runtime
systems (e.g. messaging layers, JVM and native) and the
query processing approach (e.g. iterators vs compiled
code), making it challenging to clearly understand the
source of the performance difference between the two
systems. To do so, we computed a detailed breakdown
(Figure 9b) of the execution of Q2. We took sample-based
profiles of both systems and categorized CPU time into
five components: network (low-level networking over-
heads, such as MPI and TCP/IP messaging), serialization
(aggregation in Grappa, Java object serialization in Shark),
iteration (loop decomposition and iterator overheads), ap-
plication (actual user-level query directives), and other
(remaining runtime overheads for each system).

Overall, we find that the systems spend nearly the same
amount of CPU time in application computation, and
that more than half of Grappa’s performance advantage
comes from efficient message aggregation and a more
efficient network stack. An additional benefit comes from
iterating via Grappa’s compiled parallel for-loops com-
pared to Shark’s dynamic iterators. Finally, both systems
have other, unique overheads: Grappa’s scheduling time
is higher than Shark due to frequent context switches,
whereas Shark spends time dynamically checking the
types of data values.

Shark’s execution of these queries appears to place
bursty demands on the network, and is sensitive to net-
work bandwidth. On query Q2, Shark achieves the
same peak bandwidth as GUPS (Figure 7c) sustains
(200MB/s/node), but its sustained bandwidth is just over
half this amount (116 MB/s/node).

4.3 Iterative MapReduce on Grappa
We experiment with data parallel workloads by imple-
menting an in-memory MapReduce API in 152 lines of
Grappa code. The implementation involves a forall over
inputs followed by a forall over key groups. In the all-
to-all communication, mappers push to reducers. As with
other MapReduce implementations, a combiner function
can be specified to reduce communication. In this case,
the mappers materialize results into a local hash table, us-
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periments using k-means on
a 8.9GB Seaflow dataset with
64 nodes.

ing Grappa’s partition-awareness. The global-view model
of Grappa allows iterations to be implemented by the
application programmer with a while loop.

4.3.1 Performance

We pick k-means clustering as a test workload; it exer-
cises all-to-all communication and iteration. To provide
a reference point, we compare the performance to the
SparkKMeans implementation for Spark. Both versions
use the same algorithm: map the points, reduce the clus-
ter means, and broadcast local means. The Spark code
caches the input points in memory and does not persist par-
titions. Currently, our implementation of MapReduce is
not fault-tolerant. To ensure the comparison is fair, we
made sure Spark did not use fault-tolerance features: we
used MEMORY ONLY storage level for RDDs, which does
not replicate an RDD or persist it to disk and verified
during the runs that no partitions were recomputed due to
failures. We run k-means on a dataset from Seaflow [66],
where each instance is a flow cytometry sample of sea-
water containing characteristics of phytoplankton cells.
The dataset is 8.9GB and contains 123M instances. The
clustering task is to identify species of phytoplankton so
the populations may be counted.

The results are shown in Figure 10 for K = 10
and K = 10000. We find Grappa-MapReduce to be
nearly an order of magnitude faster than the comparable
Spark implementation. Absolute runtime for Grappa-
MapReduce is 0.13s per iteration for K = 10 and 17.3s
per iteration for K = 10000, compared to 1s and 170s
respectively for Spark.

We examined profiles to understand this difference.
We see similar results as with Shark: the bulk of the
difference comes from the networking layer and from
data serialization. As K grows, this problem should be
compute-bound: most execution time is spent assigning
points to clusters in the map step. At large K, Grappa-
MapReduce is clearly compute-bound, but Spark spends
only 50% of its time on compute; the rest is in network
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Beamer’s bottom-up optimization to achieve even better
performance.

code in the reduce step. Grappa’s efficient small message
support and support for overlapping communication and
computation help it perform well here.

4.4 Writing directly to Grappa
Not all problems fit perfectly into current restricted pro-
gramming models—for many, a better solution can be
found by breaking these restrictions. An advantage of
building specialized systems on top of a flexible, high-
performance platform is that it makes it easier to imple-
ment new optimizations into domain-specific models, or
implement a new algorithm from scratch natively. For ex-
ample, for BFS, Beamer’s direction-optimizing algorithm
has been shown to greatly improve performance on the
Graph500 benchmark by traversing the graph “bottom-up”
in order to visit a subset of the edges [13]. This cannot be
written in a pure Vertex-centric framework like GraphLab.
We implemented the Beamer’s BFS algorithm directly on
the existing graph data structure in 70 lines of code. Per-
formance results in Figure 11 show that this algorithm’s
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performance is nearly a factor of 2 better than the pure
Vertex-centric abstraction can achieve.

5 Related Work
Multithreading. Hardware-based implementations of
multithreading to tolerate latency include the Denelcor
HEP [65], Tera MTA [11], Cray XMT [33], Simultaneous
multithreading [67], MIT Alewife [6], Cyclops [9], and
GPUs [32]. Hardware multithreading often pays with
lower single-threaded performance that may limit appeal
in the mainstream market. As a software implementa-
tion of multithreading for mainstream general-purpose
processors, Grappa provides the benefits of latency toler-
ance only when warranted, leaving single-threaded per-
formance intact.

Grappa’s closest software-based multithreading ances-
tor is the Threaded Abstract Machine (TAM) [24]. TAM
is a software runtime system designed for prototyping
dataflow execution models on distributed memory super-
computers. Like Grappa, TAM supports inter-node com-
munication, management of the memory hierarchy, and
lightweight asynchronous scheduling of tasks to proces-
sors, all in support of computational throughput despite
the high latency of communications. A notable conclu-
sion [25] was that threading for latency tolerance was
fundamentally limited because the latency of the top-level
store (e.g. L1 cache) is in direct competition with the
number of contexts that can fit in it. However, we find
prefetching is effective at hiding DRAM latency in con-
text switching. Indeed, a key difference between Grappa’s
support for lightweight threads and that of other user level
threading packages, such as QThreads [70], TBB [59],
Cilk [16] and Capriccio [14] is Grappa’s context prefetch-
ing. Grappa’s prefetching could likely improve from com-
piler analyses inspired by those of Capriccio for reducing
memory usage.

Software distributed shared memory. Much of the
innovation in DSM over the past 30 years has focused
on reducing the synchronization costs of updates. The
first DSM systems, including IVY [47], used frequent
invalidations to provide sequential consistency, induc-
ing high communication costs for write-heavy workloads.
Later systems relaxed the consistency model to reduce
communication demands; some systems further mitigated
performance degradation due to false sharing by adopting
multiple writer protocols that delay integration of concur-
rent writes made to the same page. The Munin [15, 19]
and TreadMarks [45] systems exploited both of these
ideas, but still incurred some coherence overhead. Munin
and Blizzard [64] allowed the tracking of ownership with
variable granularity to reduce the cost due to false shar-
ing. Grappa follows the lead of TreadMarks and provides
DSM entirely at user-level through a library and runtime.
FaRM [27] offers lower latency and higher throughput up-

dates to DSM than TCP/IP via lock free and transactional
access protocols exploiting RDMA, but remote access
throughput is still limited to the RDMA operation rate
which is typically an order of magnitude less than the per
node network bandwidth.

Partitioned Global Address Space languages. The
high-performance computing community has largely dis-
carded the coherent distributed shared memory approach
in favor of the Partitioned Global Address Space (PGAS)
model. Examples include Split-C [23], Chapel [20],
X10 [21], Co-array Fortran [56] and UPC [30]. What is
most different between general DSM systems and PGAS
ones is that remote data accesses are explicit, thereby
encouraging developers to use them judiciously. Grappa
follows this approach, implementing a PGAS system at
the language level, thereby facilitating compiler and pro-
grammer optimizations.

Distributed data-intensive processing frameworks.
There are many other data-parallel frameworks like
Hadoop, Haloop [18], and Dryad [43]. These are de-
signed to make parallel programming on distributed sys-
tems easier; they meet this goal by targeting data-parallel
programs. There have also been recent efforts to build
parameter servers for distributed machine learning al-
gorithms using asynchronous communication and dis-
tributed key-value storage built from RPCs [7, 8]. The
incremental data-parallel system Naiad [52] achieves both
high-throughput for batch workloads and low-latency for
incremental updates. Most of these designs eschew DSM
as an application programming model for performance
reasons.

6 Conclusions

Our work builds on the premise that writing data-intensive
applications and frameworks in a shared memory envi-
ronment is simpler than developing custom infrastructure
from scratch. To that end, Grappa is inspired not by SMP
systems, but by novel supercomputer hardware – the Cray
MTA and XMT line of machines. This work borrows
the core insight of those hardware systems and builds it
into a software runtime tuned to extract performance from
commodity processors, memory systems and networks.
Based on this premise, we show that a DSM system can
be efficient for this application space by judiciously ex-
ploiting the key application characteristics of concurrency
and latency tolerance. Our data demonstrates that frame-
works such as MapReduce, vertex-centric computation,
and query execution are easy to build and efficient. Our
MapReduce and query execution implementations are an
order of magnitude faster than the custom frameworks
for each. Our vertex-centric GraphLab-inspired API is
1.33⇥ faster than GraphLab itself, without the need for
complex graph partitioning schemes.
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