Grappa: enabling next-generation analytics tools
via latency-tolerant distributed shared memory

Jacob Nelson, Brandon Myers, Brandon Holt, Preston Briggs, Luis Ceze, Simon Kahan, Mark Oskin
{nelson, bholt, bdmyers, preston, luisceze, skahan, oskin}@cs.washington.edu

University of Washington

i

More Info, tech report, downloads:
http://grappa.io

[m]

Grappa is a modern take on software distributed shared memory, tailored to

exploit parallelism inherent in data-intensive applications to overcome their poor

locality and input-dependent load distribution.
Grappa differs from traditional DSMs in three ways:

- Instead of minimizing per-operation latency for performance, Grappa
tolerates latency with concurrency (latency-sensitive apps need not apply!)

- Grappa moves computation to data instead of caching data at computation

- Grappa operates at byte granularity rather than page granularity

Latency tolerance has been applied successfully in hardware for nanosecond
latencies (e.g., superscalar processors and GPUs). This project explores the
application of this idea at distributed system scales with millisecond latencies.

Relational Irregular

MapReduce GraphLab Query apps, hative

Engine code, etc...
| |
| Memory Memory Memory Memory ||
| |
gL A R B Joml 0 B B 080 B8RP
: B Cores @ | |M Cores @ W Cores @ | (M Cores :
(eSS S8ES8 SEEE EEE()

Message aggregation layer

Infiniband network, user level access

|

Programmer sees global
memory abstraction.

Thousands of threads per core to expose
parallelism and mask network latencies.

||

Messages aggregated to mitigate
low network injection rates.

Direct access to network
reduces software overhead.

Grappa’s current target is small, ~128 node clusters and
does not yet implement fault tolerance. Work is ongoing.

Key feature: Message Aggregation

Commodity networks have a limited message injection rate, so
building up larger packets from unrelated tasks is essential for small-

Distributed Shared Memory

Lightweight Multithreading
& Global Task Pool

Communication Layer

— a . In-memory MapReduce

~150 lines of code, implemented with
J) forall loop over inputs followed by
forall over keys

K-Means computation with 64 nodes
on SeaFlow flow cytometry dataset
with two different k values, compared
with Spark using MEMORY_ONLY
fault tolerance

[=]

[=]

Programming example

Grappa’s familiar single-system multithreaded C++ programming model enables easier
development of analysis tools for terabyte-scale data. We provide sequential consistency
for race-free programs using RPC-like atomic delegate operations, along with standard

multithreaded synchronization primitives.

Here is an example of using Grappa’s C++11 library to build a distributed parallel word-

count-like application with a simple hash table:

// distributed input array
GlobalAddress<char> chars;

// distributed hash table:
using Cell = map<char,int>;
GlobalAddress<Cell> cells;

forall(chars, nchars, [=](char c) {

// hash the char to determine destination

size_t 1dx = hash(c) % ncells;
delegate(cells+idx, [=](Cell& cell)
{ // runs atomically
1t (cell.count(c)
else celllc] += 1;
3);
1)

) celllc] = 1;

Node O Node 1 Node 2
Global Heap
|Iall Ilill IICII Ildll Ilgll Ilhll
Cell[0] Cell[4] Cell[5]
| | |
[[[
A L i AR S i Al
Ilall_’7 llell_’-l llfll_’2
gll_’2 IIIII_’-I

Visit http://grappa.io for more info on
memory allocation, data distribution,
and hotspot avoidance via combining.

Local heap

Experiments run at Pacific Northwest National Laboratory
on PAL cluster (1.9GHz AMD Interlagos processors,
Mellanox ConnectX-2 InfiniBand network)

Three prototype data analytics tools

GraphLab-like API

~60 lines of code, implementing:
- Synchronous engine with delta caching

- Random graph partition with no

replication

partitioning strategies

Benchmarks run on 31 nodes using 1.8B
edge Friendster social network graph
and 1.4B edge Twitter follower dataset,
compared with GraphLab using two

Backend for Raco
relational query compiler

~700 lines of code, translating physical
qguery plan into C++11 code using
Grappa forall loops

SP2Bench benchmark run on16 nodes,
compared with Shark distributed query
engine

N
o
I

M Grappa
Shark

N W
o o
| |

Time (normalized to Grappa)
o

o
I

| |
Q3b Q3c Q1 Q3a Q9 Q5a Q5p Q2 Q4
Query

15 -

N
I

o
3 Component
(D) 3 -
O [0) network
S 10 - o L o
2} $ data serialization
@ =24 iteration
£ T
= g S other overheads
= g 1 - . app compute
@)
0 - - - 0- —— | SP*Bench Query 2

1 1
Grappa Shark
More efficient network layer,

10.0 - Friendster Twitter
message throughput (fine-grained random access to global memory). — - .
o Q[-
Node 0 Node n qg’ S %6
c O G -
> 53 g
5 D _—v Core 0 8o 50- I
o O N -
---- P ® E 25- S o -
= CC) = 1 -
Core 1 —E \> Core 1 — 0.0 - - - GE) I I I I I I I I
m _ | | | = _
10 10000 1
Kk Pagerank CC SSSP BFS Pagerank CC SSSP BFS
: : Receiving core Messages Applications
Messagestllzts Sendllnlg core Buffer rr;oveg distributes deserialized: Grappa
aggregate serializes over networ Messages handlers run (MapReduce) Spark .G GraphLab [GraphLab
locally per core into buffer via MPI/RDMA 10 dest. cores on home cores fappa ;- (pds) (random)
o 36+09- — Performance breakdown (or “why is Grappa faster?”
S /
w - —
32%09 _ %J 5 GUPS o GUPS 2 PageRank on Twitter
S < =0 Prefetching ;—3 GraphLab
= 2 @ § %007 /|pisabled E (pds)
.cE>1e+09 %1_ %) &,400_ nable % rappa
cé m E ;:D CT) 200 -
L E 200 -
S = é 00 §
< 0e+00 - IS 3 0-
e A e] 0~ < 0T | | | = 0 20 40 60
1632 64 96 128 ! ! ! GraphLab Spark Grappa Grappa :
Nodes 16B 1kB 64kB (TCP) (TCP) (TCP) (RDMA) Time (s)
Message size
Grappa _ OMA Kernel-bypass communication with High-concurrency program phases enable
delegate = MPI RDMA (verbs)

increment

cache-aware data placement.

aggregation and thus high message rates.

lower serialization cost.

http://grappa.io
http://grappa.io
http://grappa.io
http://grappa.io

