
58 COMMUNICATIONS OF THE ACM | DECEMBER 2009 | VOL. 52 | NO. 12

contributed articles
DOI:10.1145/1610252.1610271

Easing the programmer’s burden does not
compromise system performance or increase
the complexity of hardware implementation.

BY JOSEP TORRELLAS, LUIS CEZE, JAMES TUCK,
CALIN CASCAVAL, PABLO MONTESINOS, WONSUN AHN,
AND MILOS PRVULOVIC

In the past, architectures were de-
signed primarily for performance or
for energy efficiency. Looking ahead,
one of the top priorities must be for
the architecture to enable a program-
mable environment. In practice, pro-
grammability is a notoriously difficult
metric to define and measure. At the
hardware-architecture level, program-
mability implies two things: First, the
architecture is able to attain high ef-
ficiency while relieving the program-
mer from having to manage low-level
tasks; second, the architecture helps
minimize the chance of (parallel) pro-
gramming errors.

In this article, we describe a
novel, general-purpose multicore
architecture—the Bulk Multicore—
we designed to enable a highly pro-
grammable environment. In it, the
programmer and runtime system
are relieved of having to manage the
sharing of data thanks to novel sup-
port for scalable hardware cache co-
herence. Moreover, to help minimize
the chance of parallel-programming
errors, the Bulk Multicore provides
to the software high-performance se-
quential memory consistency and also
introduces several novel hardware
primitives. These primitives can be
used to build a sophisticated program-
development-and-debugging environ-
ment, including low-overhead data-
race detection, deterministic replay
of parallel programs, and high-speed
disambiguation of sets of addresses.
The primitives have an overhead low
enough to always be “on” during pro-
duction runs.

The key idea in the Bulk Multi-
core is twofold: First, the hardware
automatically executes all software
as a series of atomic blocks of thou-
sands of dynamic instructions called
Chunks. Chunk execution is invisible
to the software and, therefore, puts no
restriction on the programming lan-
guage or model. Second, the Bulk Mul-
ticore introduces the use of Hardware
Address Signatures as a low-overhead
mechanism to ensure atomic and iso-
lated execution of chunks and help

MULTICORE CHIPS AS commodity architecture
for platforms ranging from handhelds to
supercomputers herald an era when parallel
programming and computing will be the norm.
While the computer science and engineering
community has periodically focused on advancing
the technology for parallel processing,8 this time
around the stakes are truly high, since there is
no obvious route to higher performance other
than through parallelism. However, for parallel
computing to become widespread, breakthroughs
are needed in all layers of the computing stack,
including languages, programming models,
compilation and runtime software, programming
and debugging tools, and hardware architectures.

At the hardware-architecture layer, we need to
change the way multicore architectures are designed.

The Bulk Multicore
Architecture
for Improved
Programmability

DECEMBER 2009 | VOL. 52 | NO. 12 | COMMUNICATIONS OF THE ACM 59

maintain hardware cache coherence.
The programmability advantages of

the Bulk Multicore do not come at the
expense of performance. On the con-
trary, the Bulk Multicore enables high
performance because the processor
hardware is free to aggressively reor-
der and overlap the memory accesses
of a program within chunks without
risk of breaking their expected behav-
ior in a multiprocessor environment.
Moreover, in an advanced Bulk Mul-
ticore design where the compiler ob-
serves the chunks, the compiler can
further improve performance by heav-
ily optimizing the instructions within
each chunk. Finally, the Bulk Multi-
core organization decreases hardware

design complexity by freeing proces-
sor designers from having to worry
about many corner cases that appear
when designing multiprocessors.

Architecture
The Bulk Multicore architecture elim-
inates one of the traditional tenets of
processor architecture, namely the
need to commit instructions in order,
providing the architectural state of the
processor after every single instruc-
tion. Having to provide such state in
a multiprocessor environment—even
if no other processor or unit in the
machine needs it—contributes to the
complexity of current system designs.
This is because, in such an environ-

ment, memory-system accesses take
many cycles, and multiple loads and
stores from both the same and dif-
ferent processors overlap their execu-
tion.

In the Bulk Multicore, the default
execution mode of a processor is to
commit chunks of instructions at a
time.2 A chunk is a group of dynami-
cally contiguous instructions (such as
2,000 instructions). Such a “chunked”
mode of execution and commit is a
hardware-only mechanism, invisible
to the software running on the pro-
cessor. Moreover, its purpose is not to
parallelize a thread, since the chunks
in a thread are not distributed to other
processors. Rather, the purpose is to I

L
L

U
S

T
R

A
T

I
O

N
 B

Y
 A

N
D

Y
 G

I
L

M
O

R
E

60 COMMUNICATIONS OF THE ACM | DECEMBER 2009 | VOL. 52 | NO. 12

contributed articles

addresses.
In the Bulk Multicore, the hard-

ware automatically accumulates the
addresses read and written by a chunk
into a read (R) and a write (W) signa-
ture, respectively. These signatures
are kept in a module in the cache hi-
erarchy. This module also includes
simple functional units that operate
on signatures, performing such op-
erations as signature intersection (to
find the addresses common to two
signatures) and address membership
test (to find out whether an address
belongs to a signature), as detailed in
the sidebar.

Atomic chunk execution is sup-
ported by buffering the state gener-
ated by the chunk in the L1 cache.
No update is propagated outside the
cache while the chunk is executing.
When the chunk completes or when a
dirty cache line with address in the W
signature must be displaced from the
cache, the hardware proceeds to com-
mit the chunk. A successful commit
involves sending the chunk’s W sig-
nature to the subset of sharer proces-
sors indicated by the directory2 and
clearing the local R and W signatures.
The latter operation erases any record
of the updates made by the chunk,
though the written lines remain dirty
in the cache.

The W signature carries enough
information to both invalidate stale
lines from the other coherent caches
(using the δ signature operation on W,
as discussed in the sidebar) and en-
force that all other processors execute
their chunks in isolation. Specifically,
to enforce that a processor executes a
chunk in isolation when the processor
receives an incoming signature Winc,
its hardware intersects Winc against
the local Rloc and Wloc signatures. If any
of the two intersections is not null, it
means (conservatively) that the local
chunk has accessed a data element
written by the committing chunk.
Consequently, the local chunk is
squashed and then restarted.

Figure 2 outlines atomic and iso-
lated execution. Thread 0 executes
a chunk that writes variables B and
C, and no invalidations are sent out.
Signature W0 receives the hashed ad-
dresses of B and C. At the same time,
Thread 1 issues reads for B and C,
which (by construction) load the non-

improve programmability and perfor-
mance.

Each chunk executes on the pro-
cessor atomically and in isolation.
Atomic execution means that none of
the chunk’s actions are made visible
to the rest of the system (processors or
main memory) until the chunk com-
pletes and commits. Execution in iso-
lation means that if the chunk reads a
location and (before it commits) a sec-
ond chunk in another processor that
has written to the location commits,

then the local chunk is squashed and
must re-execute.

To execute chunks atomically and
in isolation inexpensively, the Bulk
Multicore introduces hardware ad-
dress signatures.3 A signature is a
register of ≈1,024 bits that accumu-
lates hash-encoded addresses. Figure
1 outlines a simple way to generate a
signature (see the sidebar “Signatures
and Signature Operations in Hard-
ware” for a deeper discussion). A sig-
nature, therefore, represents a set of

Figure 1 in the main text shows a simple implementation of a signature. The bits of an
incoming address go through a fixed permutation to reduce collisions and are then
separated in bit-fields Ci. Each field is decoded and accumulated into a bit-field Vj in the
signature. Much more sophisticated implementations are also possible.

A module called the Bulk Disambiguation Module contains several signature
registers and simple functional units that operate efficiently on signatures. These
functional units are invisible to the instruction-set architecture. Note that, given a
signature, we can recover only a superset of the addresses originally encoded into the
signature. Consequently, the operations on signatures produce conservative results.

The figure here outlines five signature functional units: intersection, union, test
for null signature, test for address membership, and decoding (δ). Intersection finds
the addresses common to two signatures by performing a bit-wise AND of the two
signatures. The resulting signature is empty if, as shown in the figure, any of its bit-
fields contains all zeros. Union finds all addresses present in at least one signature
through a bit-wise OR of the two signatures. Testing whether an address a is present
(conservatively) in a signature involves encoding a into a signature, intersecting the
latter with the original signature and then testing the result for a null signature.

Decoding (δ) a signature determines which cache sets can contain addresses
belonging to the signature. The set bitmask produced by this operation is then passed
to a finite-state machine that successively reads individual lines from the sets in the
bitmask and checks for membership to the signature. This process is used to identify
and invalidate all the addresses in a signature that are present in the cache.

Overall, the support described here enables low-overhead operations on sets of
addresses.3

Signatures and Signature
Operations in Hardware

Operations on signatures.

contributed articles

DECEMBER 2009 | VOL. 52 | NO. 12 | COMMUNICATIONS OF THE ACM 61

speculative values of the variables—
namely, the values before Thread 0’s
updates. When Thread 0’s chunk com-
mits, the hardware sends signature W0
to Thread 1, and W0 and R0 are cleared.
At the processor where Thread 1 runs,
the hardware intersects W0 with the
ongoing chunk’s R1 and W1. Since W0
∩ R1 is not null, the chunk in Thread 1
is squashed.

The commit of chunks is serial-
ized globally. In a bus-based machine,
serialization is given by the order in
which W signatures are placed on the
bus. With a general interconnect, seri-
alization is enforced by a (potentially
distributed) arbiter module.2 W sig-
natures are sent to the arbiter, which
quickly acknowledges whether the
chunk can be considered committed.

Since chunks execute atomically
and in isolation, commit in program
order in each processor, and there is
a global commit order of chunks, the
Bulk Multicore supports sequential
consistency (SC)9 at the chunk level.
As a consequence, the machine also
supports SC at the instruction level.
More important, it supports high-
performance SC at low hardware com-
plexity.

The performance of this SC imple-
mentation is high because (within
a chunk) the Bulk Multicore allows
memory access reordering and over-
lap and instruction optimization. As
we discuss later, synchronization in-
structions induce no reordering con-
straint within a chunk.

Meanwhile, hardware-implementa-
tion complexity is low because memo-
ry-consistency enforcement is largely
decoupled from processor structures.
In a conventional processor that is-
sues memory accesses out of order,
supporting SC requires intrusive pro-
cessor modifications. For example,
from the time the processor executes
a load to line L out of order until the
load reaches its commit time, the
hardware must check for writes to L
by other processors—in case an in-
consistent state was observed. Such
checking typically requires sending,
for each external coherence event, a
signal up the cache hierarchy. The sig-
nal snoops the load queue to check for
an address match. Additional modifi-
cations involve preventing cache dis-
placements that could risk missing a

coherence event. Consequently, load
queues, L1 caches, and other critical
processor components must be aug-
mented with extra hardware.

In the Bulk Multicore, SC enforce-
ment and violation detection are per-
formed with simple signature inter-
sections outside the processor core.
Additionally, caches are oblivious to
what data is speculative, and their tag
and data arrays are unmodified.

Finally, note that the Bulk Mul-
ticore’s execution mode is not like
transactional memory.6 While one
could intuitively view the Bulk Multi-
core as an environment with transac-
tions occurring all the time, the key
difference is that chunks are dynamic
entities, rather than static, and invis-
ible to the software.

High Programmability
Since chunked execution is invisible
to the software, it places no restriction
on programming model, language,

or runtime system. However, it does
enable a highly programmable envi-
ronment by virtue of providing two
features: high-performance SC at the
hardware level and several novel hard-
ware primitives that can be used to
build a sophisticated program-devel-
opment-and-debugging environment.

Unlike current architectures, the
Bulk Multicore supports high-per-
formance SC at the hardware level.
If we generate code for the Bulk Mul-
ticore using an SC compiler (such as
the BulkCompiler1), we attain a high-
performance, fully SC platform. The
resulting platform is highly program-
mable for several reasons. The first is
that debugging concurrent programs
with data races would be much easier.
This is because the possible outcomes
of the memory accesses involved in
the bug would be easier to reason
about, and the debugger would in
fact be able to reproduce the buggy
interleaving. Second, most existing

Figure 1. A simple way to generate a signature.

. . .

Figure 2. Executing chunks atomically and in isolation with signatures.

T
B C

B C
X Y

ld B
st T
ld C

ld X
st B
st C
ld Y

62 COMMUNICATIONS OF THE ACM | DECEMBER 2009 | VOL. 52 | NO. 12

contributed articles

software correctness tools (such as
Microsoft’s CHESS14) assume SC. Veri-
fying software correctness under SC is
already difficult, and the state space
balloons if non-SC interleavings need
to be verified as well. In the next few
years, we expect that correctness-veri-
fication tools will play a larger role as
more parallel software is developed.
Using them in combination with an
SC platform would make them most
effective.

A final reason for the program-
mability of an SC platform is that it
would make the memory model of
safe languages (such as Java) easier
to understand and verify. The need to
provide safety guarantees and enable
performance at the same time has re-
sulted in an increasingly complex and
unintuitive memory model over the
years. A high-performance SC memo-
ry model would trivially ensure Java’s
safety properties related to memory
ordering, improving its security and
usability.

The Bulk Multicore’s second fea-
ture is a set of hardware primitives
that can be used to engineer a sophis-
ticated program-development-and-
debugging environment that is always
“on,” even during production runs.
The key insight is that chunks and
signatures free development and de-
bugging tools from having to record
or be concerned with individual loads
and stores. As a result, the amount of
bookkeeping and state required by
the tools is substantially reduced, as
is the time overhead. Here, we give
three examples of this benefit in the
areas of deterministic replay of paral-
lel programs, data-race detection, and
high-speed disambiguation of sets of
addresses.

Note, too, that chunks provide an
excellent primitive for supporting
popular atomic-section-based tech-
niques for programmability (such as
thread-level speculation17 and trans-
actional memory6).

Deterministic replay of parallel pro-
grams with practically no log. Hard-
ware-assisted deterministic replay
of parallel programs is a promising
technique for debugging parallel
programs. It involves a two-step pro-
cess.20 In the recording step, while
the parallel program executes, spe-
cial hardware records into a log the

order of data dependences observed
among the multiple threads. The log
effectively captures the “interleaving”
of the program’s threads. Then, in the
replay step, while the parallel program
is re-executed, the system enforces
the interleaving orders encoded in the
log.

In most proposals of determinis-
tic replay schemes, the log stores in-
dividual data dependences between
threads or groups of dependences
bundled together. In the Bulk Multi-
core, the log must store only the total
order of chunk commits, an approach
we call DeLorean.13 The logged infor-
mation can be as minimalist as a list
of committing-processor IDs, assum-
ing the chunking is performed in a
deterministic manner; therefore, the
chunk sizes can be deterministically
reproduced on replay. This design,
which we call OrderOnly, reduces the
log size by nearly an order of magni-
tude over previous proposals.

The Bulk Multicore can further re-
duce the log size if, during the record-
ing step, the arbiter enforces a certain
order of chunk commit interleaving
among the different threads (such as
by committing one chunk from each
processor round robin). In this case
of enforced chunk-commit order, the
log practically disappears. During the
replay step, the arbiter reinforces the
original commit algorithm, forcing
the same order of chunk commits as
in the recording step. This design,
which we call PicoLog, typically incurs
a performance cost because it can
force some processors to wait during
recording.

Figure 3a outlines a parallel execu-
tion in which the boxes are chunks
and the arrows are the observed cross-
thread data dependences. Figure 3b
shows a possible resulting execution
log in OrderOnly, while Figure 3c
shows the log in PicoLog.

Data-race detection at production-
run speed. The Bulk Multicore can
support an efficient data-race detec-
tor based on the “happens-before”
method10 if it cuts the chunks at syn-
chronization points, rather than at
arbitrary dynamic points. Synchroni-
zation points are easily recognized by
hardware or software, since synchro-
nization operations are executed by
special instructions. This approach

The Bulk Multicore
supports
high-performance
sequential memory
consistency at
low hardware
complexity.

contributed articles

DECEMBER 2009 | VOL. 52 | NO. 12 | COMMUNICATIONS OF THE ACM 63

is described in ReEnact16; Figure 4 in-
cludes examples with a lock, flag, and
barrier.

Each chunk is given a counter
value called ChunkID following the
happens-before ordering. Specifi-
cally, chunks in a given thread receive
ChunkIDs that increase in program
order. Moreover, a synchroniza-
tion between two threads orders the
ChunkIDs of the chunks involved in
the synchronization. For example, in
Figure 4a, the chunk in Thread 2 fol-
lowing the lock acquire (Chunk 5)
sets its ChunkID to be a successor of
both the previous chunk in Thread 2
(Chunk 4) and the chunk in Thread 1
that released the lock (Chunk 2). For
the other synchronization primitives,
the algorithm is similar. For exam-
ple, for the barrier in Figure 4c, each
chunk immediately following the bar-
rier is given a ChunkID that makes it a
successor of all the chunks leading to
the barrier.

Using ChunkIDs, we’ve given a
partial ordering to the chunks. For
example, in Figure 4a, Chunks 1 and
6 are ordered, but Chunks 3 and 4 are
not. Such ordering helps detect data
races that occur in a particular execu-
tion. Specifically, when two chunks
from different threads are found to
have a data-dependence at runtime,
their two ChunkIDs are compared. If
the ChunkIDs are ordered, this is not
a data race because there is an inter-
vening synchronization between the
chunks. Otherwise, a data race has
been found.

A simple way to determine when
two chunks have a data-dependence
is to use the Bulk Multicore signa-
tures to tell when the data footprints
of two chunks overlap. This opera-
tion, together with the comparison
and maintenance of ChunkIDs, can
be done with low overhead with hard-
ware support. Consequently, the Bulk
Multicore can detect data races with-
out significantly slowing the program,
making it ideal for debugging produc-
tion runs.

Enhancing programmability by mak-
ing signatures visible to software. Final-
ly, a technique that improves program-
mability further is to make additional
signatures visible to the software. This
support enables inexpensive monitor-
ing of memory accesses, as well as

We propose that the software interact with some additional signatures through three
main primitives:18

The first is to explicitly encode into a signature either one address (Figure 1a) or all
addresses accessed in a code region (Figure 1b). The latter is enabled by the bcollect
(begin collect) and ecollect (end collect) instructions, which can be set to collect only
reads, only writes, or both.

The second primitive is to disambiguate the addresses accessed by the processor
in a code region against a given signature. It is enabled by the bdisamb.loc (begin
disambiguate local) and edisamb.loc (end disambiguate local) instructions (Figure 1c),
and can disambiguate reads, writes, or both.

The third primitive is to disambiguate the addresses of incoming coherence
messages (invalidations or downgrades) against a given local signature. It is enabled
by the bdisamb.rem (begin disambiguate remote) and edisamb.rem (end disambiguate
remote) instructions (Figure 1d) and can disambiguate reads, writes, or both. When
disambiguation finds a match, the system can deliver an interrupt or set a bit.

Figure 2 includes three examples of what can be done with these primitives: Figure
2a shows how the machine inexpensively supports many watchpoints. The processor
encodes into signature Sig2 the address of variable y and all the addresses accessed in
function foo(). It then watches all these addresses by executing bdisamb.loc on Sig2.

Figure 2b shows how a second call to a function that reads and writes memory in
its body can be skipped. In the figure, the code calls function foo() twice with the same
input value of x. To see if the second call can be skipped, the program first collects
all addresses accessed by foo() in Sig2. It then disambiguates all subsequent accesses
against Sig2. When execution reaches the second call to foo(), it can skip the call if two
conditions hold: the first is that the disambiguation did not find a conflict; the second
(not shown in the figure) is that the read and write footprints of the first foo() call do not
overlap. This possible overlap is checked by separately collecting the addresses read
in foo() and those written in foo() in separate signatures and intersecting the resulting
signatures.

Finally, Figure 2c shows a way to detect data dependences between threads running
on different processors. In the figure, collect encodes all addresses accessed in a
code section into Sig2. Surrounding the collect instructions, the code places disamb.
rem instructions to monitor if any remotely initiated coherence-action conflicts with
addresses accessed locally. To disregard read-read conflicts, the programmer can
collect the reads in a separate signature and perform remote disambiguation of only
writes against that signature.

Making Signatures
Visible to Software

Figure 1. Primitives enabling software to interact with additional signatures:
collection (a and b), local disambiguation (c), and remote disambiguation (d).

Figure 2. Using signatures to support data watchpoints (a), skip execution of
functions (b), and detect data dependencies between threads running on
different processors (c).

64 COMMUNICATIONS OF THE ACM | DECEMBER 2009 | VOL. 52 | NO. 12

contributed articles

and undo and detection of cross-
thread conflicts. However, they also
have a different goal, namely simplify
code parallelization by parallelizing
the code transparently to the user
software in TLS or by annotating the
user code with constructs for mutual
exclusion in TM. On the other hand,
the Bulk Multicore aims to provide a
broadly usable architectural platform
that is easier to program for while de-
livering advantages in performance
and hardware simplicity.

Two architecture proposals in-
volve processors continuously execut-
ing blocks of instructions atomically
and in isolation. One of them, called
Transactional Memory Coherence and
Consistency (TCC),5 is a TM environ-
ment with transactions occurring all
the time. TCC mainly differs from the
Bulk Multicore in that its transactions

novel compiler optimizations that re-
quire dynamic disambiguation of sets
of addresses (see the sidebar “Making
Signatures Visible to Software”).

Reduced Implementation
Complexity
The Bulk Multicore also has advan-
tages in performance and in hardware
simplicity. It delivers high perfor-
mance because the processor hard-
ware can reorder and overlap all mem-
ory accesses within a chunk—except,
of course, those that participate in
single-thread dependences. In partic-
ular, in the Bulk Multicore, synchroni-
zation instructions do not constrain
memory access reordering or overlap.
Indeed, fences inside a chunk are
transformed into null instructions.
Fences’ traditional functionality of
delaying execution until certain ref-
erences are performed is useless; by
construction, no other processor ob-
serves the actual order of instruction
execution within a chunk.

Moreover, a processor can concur-
rently execute multiple chunks from
the same thread, and memory access-
es from these chunks can also overlap.
Each concurrently executing chunk
in the processor has its own R and W
signatures, and individual accesses
update the corresponding chunk’s
signatures. As long as chunks within
a processor commit in program order
(if a chunk is squashed, its succes-
sors are also squashed), correctness is
guaranteed. Such concurrent chunk
execution in a processor hides the
chunk-commit overhead.

Bulk Multicore performance in-
creases further if the compiler gener-
ates the chunks, as in the BulkCom-
piler.1 In this case, the compiler can
aggressively optimize the code within
each chunk, recognizing that no other
processor sees intermediate states
within a chunk.

Finally, the Bulk Multicore needs
simpler processor hardware than cur-
rent machines. As discussed earlier,
much of the responsibility for mem-
ory-consistency enforcement is taken
away from critical structures in the
core (such as the load queue and L1
cache) and moved to the cache hierar-
chy where signatures detect violations
of SC.2 For example, this property
could enable a new environment in

which cores and accelerators are de-
signed without concern for how to sat-
isfy a particular set of access-ordering
constraints. This ability allows hard-
ware designers to focus on the novel
aspects of their design, rather than
on the interaction with the target ma-
chine’s legacy memory-consistency
model. It also motivates the develop-
ment of commodity accelerators.

Related Work
Numerous proposals for multipro-
cessor architecture designs focus on
improving programmability. In par-
ticular, architectures for thread-level
speculation (TLS)17 and transactional
memory (TM)6 have received signifi-
cant attention over the past 15 years.
These techniques share key primitive
mechanisms with the Bulk Multicore,
notably speculative state buffering

Figure 4. Forming chunks for data-race detection in the presence
of a lock (a), flag (b), and barrier (c).

Figure 3. Parallel execution in the Bulk Multicore (a), with a possible
OrderOnly execution log (b) and PicoLog execution log (c).

contributed articles

DECEMBER 2009 | VOL. 52 | NO. 12 | COMMUNICATIONS OF THE ACM 65

are statically specified in the code,
while chunks are created dynamically
by the hardware. The second propos-
al, called Implicit Transactions,19 is
a multiprocessor environment with
checkpointed processors that regular-
ly take checkpoints. The instructions
executed between checkpoints consti-
tute the equivalent of a chunk. No de-
tailed implementation of the scheme
is presented.

Automatic Mutual Exclusion
(AME)7 is a programming model in
which a program is written as a group
of atomic fragments that serialize in
some manner. As in TCC, atomic sec-
tions in AME are statically specified
in the code, while the Bulk Multicore
chunks are hardware-generated dy-
namic entities.

The signature hardware we’ve in-
troduced here has been adapted for
use in TM (such as in transaction-
footprint collection and in address
disambiguation12,21).

Several proposals implement data-
race detection, deterministic replay of
multiprocessor programs, and other
debugging techniques discussed here
without operating in chunks.4,11,15,20
Comparing their operation to chunk
operation is the subject of future work.

Future Directions
The Bulk Multicore architecture is a
novel approach to building shared-
memory multiprocessors, where the
whole execution operates in atomic
chunks of instructions. This approach
can enable significant improvements
in the productivity of parallel pro-
grammers while imposing no restric-
tion on the programming model or
language used.

At the architecture level, we are ex-
amining the scalability of this organi-
zation. While chunk commit requires
arbitration in a (potentially distrib-
uted) arbiter, the operation in chunks
is inherently latency tolerant. At the
programming level, we are examin-
ing how chunk operation enables
efficient support for new program-
development and debugging tools,
aggressive autotuners and compilers,
and even novel programming models.

Acknowledgments
We would like to thank the many pres-
ent and past members of the I-acoma

Press, 2008, 289–300.
14. Musuvathi, M. and Qadeer, S. Iterative context

bounding for systematic testing of multithreaded
programs. In Proceedings of the Conference on
Programming Language Design and Implementation
(San Diego, CA, June 10–13). ACM Press, New York,
2007, 446–455.

15. Narayanasamy, S., Pereira, C., and Calder, B.
Recording shared memory dependencies using
strata. In Proceedings of the International
Conference on Architectural Support for
Programming Languages and Operating Systems
(San Jose, CA, Oct. 21–25). ACM Press, New York,
2006, 229–240.

16. Prvulovic, M. and Torrellas, J. ReEnact: Using
thread-level speculation mechanisms to debug data
races in multithreaded codes. In Proceedings of the
International Symposium on Computer Architecture
(San Diego, CA, June 9–11). IEEE Press, 2003,
110–121.

17. Sohi, G., Breach, S., and Vijayakumar, T. Multiscalar
processors. In Proceedings of the International
Symposium on Computer Architecture (Santa
Margherita Ligure, Italy, June 22–24). ACM Press,
New York, 1995, 414–425.

18. Tuck, J., Ahn, W., Ceze, L., and Torrellas, J. SoftSig:
Software-exposed hardware signatures for code
analysis and optimization. In Proceedings of the
International Conference on Architectural Support
for Programming Languages and Operating Systems
(Seattle, WA, Mar. 1–5). ACM Press, New York, 2008,
145–156.

19. Vallejo, E., Galluzzi, M., Cristal, A., Vallejo, F.,
Beivide, R., Stenstrom, P., Smith, J.E., and Valero,
M. Implementing kilo-instruction multiprocessors.
In Proceedings of the International Conference on
Pervasive Services (Santorini, Greece, July 11–14).
IEEE Press, 2005, 325–336.

20. Xu, M., Bodik, R., and Hill, M.D. A ‘flight data
recorder’ for enabling full-system multiprocessor
deterministic replay. In Proceedings of the
International Symposium on Computer Architecture
(San Diego, CA, June 9–11). IEEE Press, 2003,
122–133.

21. Yen, L., Bobba, J., Marty, M., Moore, K., Volos, H., Hill,
M., Swift, M., and Wood, D. LogTM-SE: Decoupling
hardware transactional memory from caches. In
Proceedings of the International Symposium on High
Performance Computer Architecture (Phoenix, AZ,
Feb. 10–14). IEEE Press, 2007, 261–272.

Josep Torrellas (torrellas@cs.uiuc.edu) is a professor
and Willett Faculty Scholar in the Department of
Computer Science at the University of Illinois at Urbana-
Champaign.

Luis Ceze (luisceze@cs.washington.edu) is an assistant
professor in the Department of Computer Science and
Engineering at the University of Washington, Seattle, WA.

James Tuck (jtuck@ncsu.edu) is an assistant
professor in the Department of Electrical and Computer
Engineering at North Carolina State University, Raleigh,
NC.

Calin Cascaval (cascaval@us.ibm.com) is a research
staff member and manager of programming models
and tools for scalable systems at the IBM T.J. Watson
Research Center, Yorktown Heights, NY.

Pablo Montesinos (pmontesi@samsung.com) is a staff
engineer in the Multicore Research Group at Samsung
Information Systems America, San Jose, CA.

Wonsun Ahn (dahn2@uiuc.edu) is a graduate student in
the Department of Computer Science at the University of
Illinois at Urbana-Champaign.

Milos Prvulovic (milos@cc.gatech.edu) is an associate
professor in the School of Computer Science, College of
Computing, Georgia Institute of Technology, Atlanta, GA.

© 2009 ACM 0001-0782/09/1200 $10.00

group at the University of Illinois who
contributed through many discus-
sions, seminars, and brainstorming
sessions. This work is supported by
the U.S. National Science Foundation,
Defense Advanced Research Projects
Agency, and Department of Energy and
by Intel and Microsoft under the Uni-
versal Parallel Computing Research
Center, Sun Microsystems under the
University of Illinois OpenSPARC Cen-
ter of Excellence, and IBM.

References
1. Ahn, W., Qi, S., Lee, J.W., Nicolaides, M., Fang, X.,

Torrellas, J., Wong, D., and Midkiff, S. BulkCompiler:
High-performance sequential consistency through
cooperative compiler and hardware support. In
Proceedings of the International Symposium on
Microarchitecture (New York City, Dec. 12–16). IEEE
Press, 2009.

2. Ceze, L., Tuck, J., Montesinos, P., and Torrellas, J.
BulkSC: Bulk enforcement of sequential consistency.
In Proceedings of the International Symposium on
Computer Architecture (San Diego, CA, June 9–13).
ACM Press, New York, 2007, 278–289.

3. Ceze, L., Tuck, J., Cascaval, C., and Torrellas,
J. Bulk disambiguation of speculative threads
in multiprocessors. In Proceedings of the
International Symposium on Computer Architecture
(Boston, MA, June 17–21). IEEE Press, 2006,
227–238.

4 Choi, J., Lee, K., Loginov, A., O’Callahan, R., Sarkar,
V., and Sridharan, M. Efficient and precise data-
race detection for multithreaded object-oriented
programs. In Proceedings of the Conference on
Programming Language Design and Implementation
(Berlin, Germany, June 17-19). ACM Press, New
York, 2002, 258–269.

5 Hammond, L., Wong, V., Chen, M., Carlstrom, B.D.,
Davis, J.D., Hertzberg, B., Prabhu, M.K., Wijaya, H.,
Kozyrakis, C., and Olukotun, K. Transactional memory
coherence and consistency. In Proceedings of the
International Symposium on Computer Architecture
(München, Germany, June 19–23). IEEE Press, 2004,
102–113.

6. Herlihy M. and Moss, J.E.B. Transactional memory:
Architectural support for lock-free data structures.
In Proceedings of the International Symposium on
Computer Architecture (San Diego, CA, May 16–19).
IEEE Press, 1993, 289–300.

7 Isard, M. and Birrell, A. Automatic mutual exclusion.
In Proceedings of the Workshop on Hot Topics
in Operating Systems (San Diego, CA, May 7–9).
USENIX, 2007.

8. Kuck, D. Facing up to software’s greatest challenge:
Practical parallel processing. Computers in Physics
11, 3 (1997).

9. Lamport, L. How to make a multiprocessor computer
that correctly executes multiprocess programs.
IEEE Transactions on Computers C-28, 9 (Sept.
1979), 690–691.

10. Lamport, L. Time, clocks, and the ordering of events
in a distributed system. Commun. ACM 21, 7 (July
1978), 558–565.

11. Lu, S., Tucek, J., Qin, F., and Zhou, Y. AVIO: Detecting
atomicity violations via access interleaving
invariants. In Proceedings of the International
Conference on Architectural Support for
Programming Languages and Operating Systems
(San Jose, CA, Oct. 21–25). ACM Press, New York,
2006, 37–48.

12. Minh, C., Trautmann, M., Chung, J., McDonald, A.,
Bronson, N., Casper, J., Kozyrakis, C., and Olukotun,
K. An effective hybrid transactional memory with
strong isolation guarantees. In Proceedings of the
International Symposium on Computer Architecture
(San Diego, CA, June 9–13). ACM Press, New York,
2007, 69–80.

13. Montesinos, P., Ceze, L., and Torrellas, J. DeLorean:
Recording and deterministically replaying shared-
memory multiprocessor execution efficiently. In
Proceedings of the International Symposium on
Computer Architecture (Beijing, June 21–25). IEEE

