
CPU-GPU Collaboration for Output Quality Monitoring

Mehrzad Samadi and Scott Mahlke

Advanced Computer Architecture Laboratory

University of Michigan - Ann Arbor, MI

{mehrzads, mahlke}@umich.edu

Abstract

In this paper, we proposed a new low overhead collabora-

tive technique of output quality monitoring for approximate

computing on GPUs. In this technique, the CPU is respon-

sible for performing quality monitoring while the GPU exe-

cutes approximate kernels. For two image processing appli-

cations, we showed that this technique outperforms previous

quality monitoring techniques.

1. Introduction

Heterogeneous systems that combine both traditional pro-

cessors with powerful GPUs have become standard in all

systems ranging from servers to cell phones. GPUs represent

affordable but powerful compute engines that can be used for

many of the domains that are amenable to approximation.

Approximation is applicable in domains where some degree

of variation or error can be tolerated in the result of computa-

tion. There are many important domains where approxima-

tion can greatly improve application performance, including

multimedia processing, machine learning, data analysis, and

gaming. This paper focuses on applying approximate com-

puting, where the accuracy of results is traded off for com-

putation speed, to accelerate programs on GPUs.

Recent works, Paraprox [3] and SAGE [4], provide static

compilers to generate approximate data parallel kernels.

These systems enable the programmer to implement a kernel

once using the OpenCL or CUDA data parallel languages

and, depending on the target output quality (TOQ) speci-

fied for the kernel, tradeoff accuracy for performance. At

run-time, these systems use a greedy algorithm to tune the

parameters of the approximate kernels to identify configura-

tions with high performance and a quality that satisfies the

TOQ.

As the program behavior can change at run-time, there

should be a runtime system to monitor the quality and per-

formance dynamically. After every N invocations of the ker-

nel, SAGE, similar to the Green framework [2], runs both the

exact and approximate kernels on the GPU , one after each

other, to check the output quality and performance. Compar-

ing the exact and approximate outputs to compute the quality

is also executed on the GPU in parallel to reduce the over-

head of quality monitoring. If the measured quality is lower

than the TOQ, SAGE switches to a slower but more precise

version of the program. This process will continue until the

output quality satisfies the TOQ.

However, since each time SAGE computes the quality

running both versions sequentially, this quality monitoring

has a high overhead. To reduce this overhead, in this pa-

per, we propose a new collaborative CPU-GPU quality mon-

itoring technique (CCG) which runs the quality monitoring

code on the CPU while the GPU executes approximate data-

parallel kernels.

2. Quality Monitoring Techniques

In this section, we explain different techniques to compute

the output quality. We compare the accuracy and perfor-

mance of these techniques in Section 3.

Conservative Fixed Interval (CFI): This technique

checks the output quality every Nth invocation. Computing

the output quality is done by running the approximate and

exact versions sequentially. After that, the runtime system

computes the output quality by comparing the exact and ap-

proximate outputs. Since this process has a high overhead,

quality checking has a high impact on the overall perfor-

mance of this technique.

At the checking point, if the measured quality is lower

than the TOQ − delta, the runtime system switches to a

slower but more precise version of the program. Since this

technique just reduces the aggressiveness of the approximate

versions, we call this technique conservative.

Conservative Adaptive Interval (CAI): This approach

is similar to CFI but to reduce the monitoring overhead of

the CFI, this technique performs quality checking more fre-

quently to converge to a stable solution faster at the begin-

ning of the execution. If the output quality is higher than

TOQ − delta, the interval between two checking points is

gradually increased so that the overhead of quality check-

ing is reduced. Every time the run-time management needs

to change the selected kernel (output quality is lower than

TOQ − delta), the interval between checking points is re-

set to a minimum width. This technique is conservative too

(like the CFI) so the overall performancemight be lower than

ideal.

Non-Conservative Fixed Interval (NFI): To improve

the performance, unlinke aformentioned techniques, this

technique is looking for opportunities to increase the aggres-

siveness of approximate versions. At the checking point, if

the output quality is higher than TOQ + delta, the runtime

system increases the aggressiveness of the approximate ver-

sions. On the other hand, if the output quality is lower than

TOQ− delta, the runtime system decreases the aggressive-

ness of the approximate versions.

Non-Conservative Adaptive Interval (NAI): This tech-

nique is similar to the NFI but with adaptive intervals. Since

this technique is adaptive and non-conservative, its overall

performance should be higher than the last three mentioned

techniques.

Collaborative CPU-GPU (CCG): Instead of checking

every Nth invocation, this technique checks the quality of

all invocations and runs the quality checking on the CPU in

parallel to the GPU execution using synchronous execution.

At each time quantum, the GPU runs the selected kernel for

an invocation while the CPU computes the output quality

for the next invocation. To make the overhead of quality

checking almost zero, it should be completely overlapped

by the kernel execution.

However, since GPU’s the performance is higher than the

CPU’s for data parallel kernels, the CPU cannot keep up with

the GPU while computing the output quality for the whole

input data set. We solved this problem by two means: First,

we parallelized the output quality computing on the CPU

with four threads. Second, instead of performing full quality

checking, this technique runs partial quality checking, which

applies the exact and approximate kernels to a subset of input

data and compares the results to estimate the overall output

quality. To perform partial quality monitoring, we identified

three central challenges that must be solved.

First, it is not straight-forward how to generate partial

quality checking code for general applications automatically.

In this paper, we wrote these codes manually. However, it is

possible to use the same pattern-based compilation method

as used in Paraprox [3]. Paraprox creates approximate ker-

nels by recognizing common computation idioms found in

data-parallel programs (e.g., Map, Scatter/Gather, Reduc-

tion, Scan, Stencil, and Partition) and substituting approx-

imate implementations in their place. It is possible to gener-

ate pattern-based partial checking codes too.

Second, the subset of the input data that is used for partial

quality monitoring should be chosen carefully to be a repre-

sentative for the whole input data set. For now, we chose a

uniformly distributed data from the input array and applied

partial quality monitoring to that.

Third, the method of choosing the aggressiveness of ap-

proximation for the next kernel based on the partial output

quality is important to get the best accuracy. In this work, we

checked the output for three levels of approximation for each

invocation (the current level, one level more aggressive, and

� �� �� �� �� �� ��

�	

��

�	

��

��

�������������������������������������� ����!������"#$%�& '����(

)�����)���

Figure 1: Percentages of images with unacceptable quality

(lower than TOQ − delta) for different quality monitoring

techniques.

� ��� � ��� � ��� �

��	

�
	

��	

�
	

���

������

������ ����

Figure 2: Overall speedup of applying two programs on all

1600 images.

one level less aggressive). After computing the partial output

quality for three approximate versions, the CPU will decide

which one to use for the next kernel.

3. Experimental Evaluation

In this section, we show how these quality monitoring tech-

niques affect the execution time and accuracy of different

applications. We used two applications from the image pro-

cessing domain: Mosaic and Mean filter. To approximate

these benchmarks, we used the approximation methods de-

scribed in Paraprox [3]. For Mosaic application, we used

loop perforation [1]. For Mean filter, we assumed that neigh-

bor pixels have similar values. Based on this assumption,

rather than accessing all neighbors within a tile, we access

only a subset of them and assumes the rest of the neighbors

have the same value. We applied these applications on 1600

500× 500 images of different flowers. In these experiments,

we set the TOQ to 95% and delta is 1%.

Figure 1 shows the percentages of images for which their

output quality is not acceptable (lower than TOQ − delta)

for all quality monitoring techniques. In other words, this

figure shows how accurate these techniques are. Figure 2

shows the overall speedup of different techniques for apply-

ing Mosaic and Mean filter applications on all 1600 images.

As expected, conservative techniques’ (CFI and CAI) out-

put quality is always better than other techniques. However,

they do not show great performance. Non-conservative tech-

niques provide great speedups but the quality of more than

25% of images is not acceptable with these techniques. The

problem is that these techniques are based on the assump-

tion that it is possible to predict the quality of images by

computing the quality of every Nth invocations. As seen in

these figures, the CCG outperforms other techniques mostly

because its monitoring overhead is negligible.

References

[1] A. Agarwal, M. Rinard, S. Sidiroglou, S. Misailovic, and

H. Hoffmann. Using code perforation to improve performance,

reduce energy consumption, and respond to failures. Technical

Report MIT-CSAIL-TR-2009-042, MIT, Mar. 2009.

[2] W. Baek and T. M. Chilimbi. Green: a framework for support-

ing energy-conscious programming using controlled approxi-

mation. In Proc. of the ’10 Conference on Programming Lan-

guage Design and Implementation, pages 198–209, 2010.

[3] M. Samadi, D. A. Jamshidi, J. Lee, and S. Mahlke. Paraprox:

pattern-based approximation for data parallel kernels. In 19th

International Conference on Architectural Support for Pro-

gramming Languages and Operating Systems, page to appear,

2014.

[4] M. Samadi, J. Lee, D. A. Jamshidi, A. Hormati, and S. Mahlke.

SAGE: Self-tuning approximation for graphics engines. In

Proc. of the 46th Annual International Symposium on Microar-

chitecture, pages 13–24, 2013.

