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Abstract
One promising approach to energy-efficient computation,

approximate computing, trades off output precision for gains
in energy efficiency. Many applications can easily tolerate
small errors, especially if they are handled in a disciplined
manner. However, approximation introduces an inherent trade-
off between quality of result and energy efficiency. Existing
approaches lack ways to quantify and study these tradeoffs.
This paper proposes tools to prototype, profile, and automati-
cally tune the quality of programs designed to run on future
approximate hardware. We describe the software layers re-
quired in such a system and discuss design considerations.
We built an OCaml-based prototype of our set of tools and
performed three case studies.

1. Introduction
Energy efficiency has become a critical component of com-
puter system design. Battery life is a major concern in mobile
and embedded devices; power bills make up a large part of the
cost of running data centers and supercomputers; and the dark
silicon problem limits the amount of usable chip area due to
power constraints [9].

Approximate computing is a promising approach that al-
lows systems to trade accuracy for energy efficiency or perfor-
mance. If applications can tolerate occasional errors, hardware
can consume less power. For example, reducing the refresh
rate of DRAM saves energy at the cost of occasional mem-
ory errors [15]. Similarly, we can execute instructions on
a low-powered pipeline if we can tolerate occasional logic
errors [10].

Many applications have kernels that are amenable to ap-
proximation. For example, applications that work with audio,
video, or images are inherently error-tolerant—in fact, com-
mon media storage formats involve lossy compression. Any
code that involves a randomized or approximate algorithm can
also tolerate imprecision. However, even the most approx-
imable applications require some code to execute precisely.
For example, memory allocation, control flow, and bounds
checking must be precise to avoid faults. Some applications
also have certain phases that must execute precisely. For in-
stance, while we can often approximate the pixels of an image,
approximation in the image header may be catastrophic.

Energy savings from approximate computing typically
come from hardware. However, only the application can deter-
mine where approximation is appropriate. Thus, a language
with support for approximation must allow programmers to

distinguish parts of a program—variables, operations, meth-
ods, loops, and so on—that are tolerant to error. Examples of
such languages include the EnerJ extension to Java [23] and
the Rely programming language [4].

Approximate computing represents a tradeoff between en-
ergy efficiency and quality of result (QoR). Researchers (and
developers) investigating approximate computing need tools
to help quantify this tradeoff and understand how much QoR
must be sacrificed to achieve desired efficiency gains. Users
can also benefit from understanding which portions of their
code should be approximate, and which precise, to optimize
this tradeoff.

To address these challenges, we propose an architecture
for a tool that prototypes, profiles, and autotunes approxi-
mate applications designed for future approximate hardware
using only readily-available conventional hardware. Our ar-
chitecture consists of approximation, profiling, and autotuning
layers. The approximation layer is responsible for simulating
the effects of approximate hardware. Both the approxima-
tion model and the energy cost model are customizable. The
profiling layer uses the approximation layer to monitor both
the quality lost and the efficiency gained due to approxima-
tion. Because QoR is an application-specific measurement,
the profiler takes a QoR-evaluation function as input. Finally,
the autotuning layer builds on the previous layers to explore
alternate precise–approximate decompositions of user code
blocks. It searches for points along the Pareto frontier of opti-
mal quality–efficiency tradeoffs. We have implemented this
architecture for OCaml programs by modifying the OCaml
implementation. We call our tool EnerCaml. It is available at
our website [8].

The rest of this paper describes the layers of our architecture
in more depth. We also describe our implementation and three
case studies. Further details about EnerCaml can be found
in [21].

2. Approximation Layer

To determine how a prototype application can leverage approx-
imate computing, we need a way for programmers to indicate
where approximation is acceptable. To determine how the ap-
plication responds to different kinds of approximate hardware,
we need a way to run the application such that approximation
occurs according to some model. This section describes our
design for both needs.
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2.1. Code-Centric Approximation

We assume most code will be written assuming precise exe-
cution but that some energy-consuming kernels will leverage
approximation. We therefore have explicit markers in the
program to indicate that the execution of some code block
can be approximate. (In languages like OCaml with higher-
order functions, such a marker can just be a function tak-
ing a function, so an approximate computation e looks like
approximate (fun () -> e), but the syntax is not
essential.) Conversely, users can indicate that a subcomputa-
tion of an approximate computation should be precise (e.g.,
precise (fun () -> e)). This code-centric approach
has complementary advantages to data-centric approaches that
mark approximate data elements instead of code blocks. In
prototyping applications, we often found the code-centric ap-
proach avoided unnecessary copying of data into and out of
kernels.

Even within approximate computations, many operations
would lead to crashes and other bad behavior if executed
approximately. Examples include control flow and memory
management. Therefore, we take a conservative approach to
approximate execution and allow imprecision only in arith-
metic operations, comparisons, and loads from numeric arrays.
Approximate array loads model approximate memory since
whether the load or the storage system introduces the error is
irrelevant to the application.

When prototyping how approximation can change applica-
tion behavior, one simply marks approximate sections of code
(and precise subsections within them). This purposely simple
approach adds only directly relevant work over implementing
the original algorithm.

2.2. Simulating Approximation

For understanding and prototyping approximation, we argue
against this natural approach: Build an approximate hardware
platform (or simulator), write a compiler, run the program, and
measure QoR and energy usage. Such an approach gives little
feedback in terms that make sense with respect to the high-
level algorithm. Moreover, tweaking low-level parameters
(e.g., DRAM refresh rate) will likely have inscrutable effects
on quality of result.

Instead, we advocate and have implemented a high-level
configurable approximation model directly corresponding to
the operations visible in the programming language. For each
approximated operation, we apply a transformation to the pre-
cise output to produce the approximate output. For example,
one simple model is that with probability p a load is correct
and with probability 1− p it is a uniformly random bit-pattern.
A model representing approximate arithmetic functional units
could incorporate that low-order bits are more likely to be
wrong. We expect users to design these models based on com-
plementary research on approximate hardware, allowing a key
separation of concerns between high-level application design

and low-level hardware design.
An essential advantage of this approach is that making the

approximation model configurable is easy: We can provide
hooks (e.g., a library API) for users to plug in arbitrary func-
tions to replace each approximate result. For example, to
configure our system such that approximate integer arithmetic
produces the wrong low-order bit with probability 0.1, one
would just run this code:

let flip p i = (if ((Random.float 1.0) < p)
then (i lxor 1) else i)

in set_integer_approximation (flip 0.10)

We provide similar hooks to customize the amount of simu-
lated energy saved given a trace of execution events.

3. Profiling Layer

The profiling layer is responsible for estimating the energy
savings and quality of result for an execution of an approxi-
mate application. This may vary between runs due to different
inputs and the randomness present in most forms of approxi-
mation.

Quality is measured by comparing an approximate execu-
tion with a precise execution with identical inputs. It is inher-
ently application-specific, so the profiling layer must provide
a way for users to specify how executions should be compared.
This involves specifying the outputs to be compared along
with an output comparison function (the QoR function). The
profiling layer runs the code twice, collects the outputs of both
runs, and compares them using the QoR function.

For example, an EnerCaml programmer writing a ray tracer
might record the final pixel values for comparison:

let _ = record_profile_output g
in Printf.fprintf pgm_file "%c" g

and compare them using peak signal-to-noise ratio:

let mse prc app = (* Compute mean-squared
error between lists prc and app *) in

let psnr precL appL = 10. *. (log10
((255. *. 255.)/.(mse precL appL))) in

eval_qor psnr

The record_profile_output function appends its ar-
gument to a list of output data specific to the current execution.
After the precise execution, the profiling layer saves this list
and starts a new list for the approximate execution. At the end
of the approximate execution, we apply the QoR function (the
argument to eval_qor) to the two lists. We then output the
computed QoR and an estimate of the energy saved. As men-
tioned in Section 2, we provide hooks that let users customize
the estimation of energy savings from approximation. By de-
fault, we use a simple metric proportional to the percentage of
approximable operations executed approximately.
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Figure 1: Static call trees illustrating the strategies we propose to search the precise-approximate decompositions of programs
for improved quality of service versus efficiency tradeoffs. A black node represents an approximate function application and a
white node represents a precise application. Figure (a) shows the originally specified approximation. Figure (b) shows the result
of making one call site precise. Figure (c) shows the result of narrowing the approximation to just that same call site. Finally,
figure (d) illustrates the result of making two sibling call sites precise.

4. Autotuning Layer

The profiling layer lets programmers investigate the QoR and
efficiency implications of their approximate programs. How-
ever, to improve QoR–energy tradeoffs, programmers must
be able to determine which portions of their code are most
amenable to approximation and which should be kept precise.
Doing this by hand is tedious and time-consuming due to the
number of possible combinations of precise and approximate
annotations. The autotuning layer automates part of this pro-
cess and generates a set of simple code changes that improve
QoR and/or efficiency.

The autotuner builds on the profiling system to navigate the
search space of alternate precise/approximate decompositions
of the original program. The goal is to automatically identify
program annotations that offer better efficiency–QoR tradeoffs
than an initial annotation provided by the programmer. Using
search heuristics, the autotuner generates many alternative
program decompositions and profiles each in turn to assess its
energy efficiency and QoR. The configurations with the best
efficiency and QoR are reported to the programmer.

The autotuner’s search heuristics consist of removing ap-
proximation from code that was marked as approximate in
the original code. We never add approximation to code that
was originally specified as precise—the programmer’s initial
annotation bounds approximation to code that can be safely
relaxed. Each alternative program decomposition consists of a
set of static call sites within an approximate computation that
are marked as precise (as if with the precise marker). The
idea is that programmers can roughly indicate an area where
approximation might be appropriate and the autotuner refines
the region to improve QoR–efficiency tradeoffs.

Exhaustively considering every subset of the call sites in an
approximate computation would create an exponential search
space. Thus, the autotuner must use heuristics to choose which
call sites to evaluate. We found that the following heuristics
(illustrated by the static call trees in Figure 1) worked well in

EnerCaml:
• Make a single call site precise.
• Make all call sites in the computation precise except for

one, effectively “narrowing” approximation to the chosen
site.

• Make a pair of call sites that appear in the same calling
function precise. Intuitively, these “adjacent” call pairs are
more likely to have a synergistic effect—i.e., the benefit of
making them both precise may be more than the sum of the
benefits of making them individually precise.

The chosen heuristics represent a tradeoff between autotuning
time and the thoroughness of the search. Additional strategies
would be easy to add but, in our studies, we found that the
above strategies were sufficient.

The autotuner profiles each alternative configuration and
collects its QoR and estimated energy savings. If one result
has both better QoR and higher energy savings than another
result, we say that the former result dominates the latter. The
tool reports all configurations that are not dominated. This
represents the Pareto frontier of the best discovered QoR ver-
sus efficiency tradeoffs. Users may also iteratively refine these
configurations by rerunning the autotuner. Figure 2 depicts an
excerpt of the tool’s output, including a textual listing and a
graph.

5. The EnerCaml System

We built a prototype of our proposed tool called EnerCaml.
EnerCaml allows researchers and developers to prototype ap-
proximate applications in OCaml [19] and to customize their
approximation and energy models. EnerCaml also contains
a QoR–efficiency profiler and autotuner. OCaml is known
to be a good tool for prototyping, and its functional style is
also a very good fit for our autotuning strategies that vary the
approximation at static call sites. This section briefly describes
the implementation of EnerCaml and then discusses three case
studies.
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Narrowing approximation to trace.ml, line 16,
character 10:
QOR: 37.644753, Approximation score: 22.282223
...
Narrowing approximation to trace.ml, line 36,
character 13:
QOR: 32.663749, Approximation score: 63.438417
...
Making precise trace.ml, line 55, character 47:
QOR: 28.351986, Approximation score: 94.797524
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Figure 2: Our autotuner produces a textual and graphical depiction of the best results among the profiled executions.

5.1. EnerCaml Implementation

The EnerCaml implementation tracks precise and approxi-
mate execution by compiling two versions of each function:
a precise version and an approximate version. The precise
version is called whenever we apply the function in a precise
context (i.e., inside precise code) or execute the argument of a
precise call. The approximate version is called whenever
we apply the function in an approximate context or execute
the argument of an approximate call. We track the two
versions by adding a second code pointer to each closure. Pro-
filing and autotuning are handled by modifying the interpreter
to execute applications multiple times. We track all the approx-
imate function calls (calls that follow the approximate code
pointer) and modify them according to our search heuristics
in subseqeunt runs. To ensure that output data from previous
runs is preserved, we copy it out of the (garbage-collected)
OCaml heap and into the C heap used by the runtime.

This approach works well for prototyping and profiling,
which is our goal. On real energy-saving approximate hard-
ware, however, it may be less compelling because the extra
space required for dual closures would use more energy. De-
signers of such systems can utilize alternate approaches that
transfer execution to approximate cores or track approximate
state with hardware bits.

5.2. Case Study: Ray Tracer

Our first EnerCaml case study involved adding approximation
to a ray tracer [11]. The ray tracer has two phases: scene cre-
ation and ray tracing. First, we approximated scene creation:

let app_scene = approximate(fun () ->
create level {x=0.; y= -1.; z=4.} 1.)

Next, we approximated ray tracing:

let approx_g = approximate(fun () ->
ray_trace dir scene)

We then instrumented the program for profiling and auto-
tuning in order to study the QoR–efficiency tradeoffs. We
used the instrumentation shown in Section 3 (record the value

of each output pixel and compare with PSNR). We then pro-
filed the ray tracer with our default approximators and cost
model (which uses approximation percentage as a proxy for
efficiency). Our initial PSNR was 26.9, with 94.8% approx-
imation. This image is shown in Figure 3a. We then ran the
autotuner to see if we could improve these results. Figure 2
shows the Pareto frontier found by the autotuner. The first
thing that we noticed is that we can obtain better QoR (PSNR
of 28.4), while only giving up a very small amount of approx-
imation by making scene creation precise. Intuitively, small
changes in the positions of objects can have significant impacts
on the errors of some pixels because they can move the bound-
ary between shadowed and non-shadowed pixels. Since most
of the computation is in ray-tracing and not scene creation, we
made scene creation precise and reran the autotuner.

On our next autotuning run, the most interesting results
involved the ray_sphere function (which computes the
first intersection of a ray and a sphere). We achieved a 29.9
PSNR with 86.3% approximation by narrowing approxima-
tion to ray_sphere, and a 36.9 PSNR with 22.3% approx-
imation by narrowing approximation to a single dot product
in ray_sphere (see Figure 3b). We focused our efforts
on this code by moving the approximation primitive to the
ray_sphere call and rerunning the autotuner. We discov-
ered a number of new points along our frontier curve, includ-
ing 33.6 PSNR with 41.8% approximation (Figure 3c), and
31.5 PSNR with 64.1% approximation. These results were
obtained by making either individual calculations or pairs of
calculations in ray_sphere precise.

It would have required significantly more effort to charac-
terize the effects of approximation without our tools. The
autotuner quickly eliminated scene creation due to its large
impact on QoR and then pointed us to the importance of
ray_sphere.

5.3. Case Study: N-Body Simulation

The next application that we looked at was an N-body sim-
ulation benchmark [25]. We used a simple QoR metric that
calculates the inverse of the average error. The simulation
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Figure 3: The images generated by our ray tracer with various mixtures of approximate and precise execution. Figure (a) shows
the initial approximation, with PSNR 26.9 and 94.8% approximation. Figure (b) shows the image with 36.9 PSNR and 22.3%
approximation. Figure (c) shows the image with 33.6 PSNR and 41.8% approximation.

first initializes the system by calling offset_momentum
and then advances the system one step at a time by calling
advance in a loop. We made both calls approximate:

approximate(fun() -> offset_momentum bodies);
...
for i = 1 to n do
approximate(fun() -> advance bodies 0.01)

done;

Initially, our autotuner was not able to tell us very much
because the only function applications it identified were the
two outer-level calls to offset_momentum and advance.
We looked at the code and discovered that it was written in
a very imperative style. We were quickly able to identify
various subcomponents of the calculation, and wrap them in
function calls. When we reran the autotuner, we found that two
of the subcomponents of the calculation could be profitably
approximated with very low impact on the quality of result:

QOR = 5562.919330
Percent approximated: 24.456460
QOR = 7436.822960
Percent approximated: 24.456460

These are significantly better than the original approximation,
which had a QOR of roughly 0.01. We also tried approximat-
ing both of the identified computations to see if we could get
good QoR with a larger fraction of operations approximated.
Our results were promising:

QOR = 3821.292285
Percent approximated: 48.912917

In the case of the N-body simulation, the autotuner allowed
us to identify portions of the simulation that could be profitably
approximated without significantly impacting the QoR.

5.4. Case Study: Collision Detector

Our third case study was a simple collision detection ker-
nel [20] that checks whether two triangles intersect. Our
QoR metric calculates the percentage of correct intersection
tests. We added approximation at the call to the intersection
check function. We then ran the profiler to get a baseline
and achieved 97.81% correctness with 93.96% approximation.
We then ran the autotuner to see if we could do better. Most
of the proposed changes involved some combination of call
sites from four source lines. Two of the lines compute the
normals of the planes containing the two triangles. The other
two lines use the normals to test whether all three points of one
triangle lie on the same side of the plane of the other triangle
(indicating no intersection). We experimented with making
these computations precise. When we made both of the nor-
mal calculations precise, our QoR increased to 98.88% and
our approximation rate dropped to 67.1%. When we instead
made the no-intersection checks precise, our QoR rose only
to 97.94% but our approximation was almost unchanged at
93.0%. When we combined both changes, we were able to
detect 98.93% of collisions correctly and still approximate
66.1% of the approximable operations. Compared to the orig-
inal annotation, we were able to eliminate over 51% of the
errors while losing less than 30% of the approximation.

6. Related Work
Many systems have proposed trading off quality to improve
performance or save energy using both software [2, 12, 24, 27]
and hardware [5, 7, 10, 13, 15, 18] techniques. Several studies
have shown that a wide variety of applications can tolerate the
resulting imprecision with acceptable results [6, 14, 26]. This
work on approximate computing forms the context for tools
for managing approximation like the one proposed here.

Some language-level techniques seek to help developers
mitigate the effects of approximate semantics. Carbin et al. [3]
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propose a proof system for verifying user-specified correctness
properties in relaxed programs. The Rely system [4] (which
uses a similar error model to ours) bounds the probability that
values produced by an approximate computation are correct by
examining the static data flow of nondeterministic operations.
Misailovic et al. [16] use probabilistic reasoning to prove accu-
racy bounds on relaxed transformations. EnerJ [23] provides a
simple noninterference guarantee. These techniques are static
and conservatively bound imprecision. Programmers writing
to a relaxed programming model can use them in tandem with
dynamic tools like EnerCaml to obtain an empirical picture of
quality loss.

The SAGE system [22] implements approximation for
CUDA GPU kernels. On of their two phases is a runtime tun-
ing phase that bears some similarities to our autotuning. Their
system target a much later phase of the development workflow:
runtime tuning of deployed applications in a specific target
environment. Thus, they focus on tweaking approximation
parameters, rather than exploring which parts of a computation
are most amenable to approximation.

The PetaBricks language extensions and compiler fea-
tures [1] allow developers to auto-tune variable-accuracy al-
gorithms, a category which includes approximate algorithms.
They focus on performance rather than the quality–energy
trade-offs we are looking at, but some of the language exten-
sions they propose may be useful for us to consider.

Quality-of-service profiling [17] identifies code that has
little influence on output quality. Programmers can consider
relaxing this code to improve performance. In contrast, our
tool uses a priori programmer annotations to identify approxi-
mate portions of programs that should be made more accurate
to achieve a desired QoR level. EnerCaml is a closed-loop
system that suggests specific code modifications to achieve
better energy–quality tradeoffs.

7. Conclusion
This paper proposes an architecture for prototyping, profiling,
and autotuning approximate computations. We believe that
approximate computing will be a significant factor in improv-
ing the energy efficiency of computations in the future. Until
now, however, there was a lack of tools to help researchers and
developers understand the quality of result versus efficiency
tradeoffs that are inherent in approximate computing. This
work addresses that pressing need.
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