
Approximate Semantics for Wirelessly Networked Applications

Benjamin Ransford and Adrian Sampson and Luis Ceze
University of Washington

Abstract
Approximation saves energy in computation and storage by
allowing data to diverge from precise representations. In
contrast, networks guarantee that transmissions are received
precisely by enforcing integrity checks at multiple layers of
the protocol stack; these checks result in onerous retransmis-
sions and increased network contention especially in wire-
less networks. When energy is limited, such as on embed-
ded systems, conservative network semantics can needlessly
consume an application’s energy budget. Why should ap-
proximate data be transmitted precisely?

1. Introduction
Low-level network layers abstract away details such as er-
ror handling to provide an interface for data to be received
exactly as it was transmitted. This abstraction is not well
matched to applications that deal with approximate infor-
mation: both senders and receivers expend time and energy
trying to ensure data integrity. Application designers cannot
easily express a desire to relax integrity requirements.

A wealth of past research has proposed ways of recover-
ing information from erroneous transmissions [1, 4], of re-
ducing redundancy in transmissions [9], and of rearranging
data to make decoding errors less damaging [8]. Our goal is
to allow application designers who are using approximation
in their applications to communicate approximate data ef-
ficiently. Relaxing integrity requirements for approximately
data may allow for faster transmission, longer range [6], and
reduced power requirements.

Our proposed approach is to allow for different treatment
of precise and approximate data across the network stack.
We provide applications with a configurable switch that tog-
gles between precise and approximate behavior, making the
necessary adjustments to lower layers of the network stack.
It complements other approximation techniques for compu-
tation and storage, endowing approximate applications to
naturally extend their capabilities to the network.

Applications that may benefit from approximate com-
munication include distributed sensors that stream real-time
readings, media playback, and even applications that require
some transmissions to remain precise, such as HTTP or re-
mote desktop.

2. Building Blocks for Approximate
Networking

To retain many of the benefits of current networking tech-
niques (straightforward APIs for sending and receiving data,
well-tested network stacks, etc.), we propose working within
the common layered network model, rather than, for exam-
ple, creating new primitives atop software-defined radio.

802.11 frame payload

802.11 
frame 

checksum

802.11 frame header

IP header

IP payload

IP header
checksum

TCP header

Application data
TCP

checksum

Figure 1. A TCP-over-IPv4 packet on WiFi carries three
separate checksums (shaded). We propose to drop the outer-
most checksum and make the innermost checksum optional.

Figure 1 depicts the layered representation of applica-
tion information in a modern network, using 802.11 (WiFi)
for the lowest layers and TCP as the transport protocol.
Even a single bit flip in the application’s data payload
will trigger a retransmission in the 802.11 MAC layer. The
TCP packet’s checksum computation is redundant with the
802.11 frame’s.1 A better match for approximate data trans-
mission would have the following properties:

1. Optional integrity checks at multiple layers, to permit
errors in approximate payloads.

2. Partial integrity checking to make sure control data (ad-
dresses, ports, etc.) are precise.

3. Backward compatibility with existing network stacks to
avoid networks between the sender and receiver flagging
the traffic as strange.

1 IPv6 packets do not carry their own header checksums, depending instead
on the surrounding layers (e.g., 802.11 and TCP).



4. Simplicity of integration with existing applications.

5. Optional TCP-like behavior such as exponential backoff.

6. Quality metrics to measure and control the correctness of
the approximation, as in other approximation systems.

802.11 frame payload

802.11 frame header

IP header

IP payload

IP header
checksum

UDP-Lite header

Application data

UDP-Lite
checksum

Figure 2. In our revised model, a single, variable-size
checksum guards some fraction of the application payload.

UDP-Lite and selective approximation. Our approach to
approximate networking on 802.11 is based on:

• UDP-Lite [3] with configurable checksum coverage—
specifying how many bits are protected by a checksum—
in place of TCP for application data. UDP-Lite is already
implemented in mainstream network stacks, so routers
will not discard it (unlike damaged TCP packets).

• A user-space socket library that allows applications to
specify approximate or precise transmission (and switch
at will) for a given socket.

• A kernel-space switch that toggles 802.11 frame integrity
checking in the WiFi device driver.

Figure 2 depicts the application data of Figure 1 recast
in a UDP-Lite packet under our scheme. The application
can control how much of the IP payload is protected by a
checksum, optionally protecting important header informa-
tion or metadata. When the unprotected portion is corrupted,
no checksum catches the error. An application may evaluate
the payload and decide whether to request retransmission.

Our approach exhibits all but the last two desirable prop-
erties mentioned above.

Measuring and controlling quality. Previous approaches
to approximation have resulted in application-specific qual-
ity metrics (e.g., PSNR for video). Our communication
mechanism can adapt these metrics for use with transmitted
payloads; bit error rate (BER), for example, is meaningful in
many contexts. An API to specify maximum error tolerance
is future work. One challenge endemic to this setting is that
the sender and receiver are likely to be different entities, so
obtaining ground truth against which to measure quality is
difficult. A viable strategy may involve computing multiple

partial checksums and requiring a quorum of “good” blocks,
in the manner of PPR [1].

Another promising approach to bounding error is to add
error correction at the application layer, giving applications
the ultimate responsibility for quality measurement. Soft-
ware libraries for forward error correction such as libfec [2]
can allow applications to specify the error resilience of their
transmissions. Moving error detection and correction up
the stack has been shown to improve throughput in many
cases [4].

Adding back connection state. Unlike TCP, UDP is state-
less; the client and server have no notion of a connected
socket that provides in-order delivery and survives a session.
The traditional approach for applications using UDP is to in-
corporate state into higher layers. This aspect of our protocol
is as yet unimplemented.

Wired networks. Approximate networking is most read-
ily suited to wireless networks, where errors are the com-
mon case. Wired devices such as cable modems also use
forward error correction to cope with long cable runs and
line noise; approximate transmission may ease the burden
for high-throughput applications such as video streaming.
Other networks in which the last hop is the least reliable are
likely to derive a similar benefit. Fewer errors at the last hop
results in less backpressure on links along the entire path
from the source.

3. Challenges for Approximate Networking
Approximate networking provides a “noisy channel” that
poses challenges for the application layer. In general, these
challenges are common to any approximate system that ex-
poses random noise, including approximate memories [5, 7].

Precision granularity. Approximate applications use a
mixture of error-resilient and error-tolerant data [5, 7]. To
avoid excessive switching overhead, software should change
precision levels at a coarse granularity, but application con-
straints may sometimes demand finer-grained interleaving.
An approximate networking protocol will need to choose
the finest granularity at which approximate and precise
data transmission may interleave as a compromise between
network-level efficiency and application-level needs.

Encryption. Encrypted network data is intolerant of small
transmission errors. In fact, this is a desirable property for
cryptosystems: for security, any change in the plaintext
should produce completely different ciphertext. Therefore,
even data that would otherwise be error resilient—images,
audio, video—becomes error intolerant when it is encrypted.
The feasibility of approximate communication and storage
channels depends on either a large proportion of unencrypted
approximate data or the use of encryption schemes that iso-
late errors in the ciphertext. For example, a scheme that
encodes data blocks independently—as opposed to block-

2



chaining schemes, for example—prevents errors from cor-
rupting any data beyond the blocks in which they occur.

Compression and encoding. As with encryption, com-
pression techniques threaten the independence of errors that
approximate computing systems depend on. If a node trans-
mits a raw stream of samples, then a single transmission
error can corrupt at most one data element. Compressed
formats like JPEG, however, allow errors to contaminate
the entire image. Common compression techniques such as
run-length encoding lead to storage of metadata that lead
to catastrophically poor output even with very small er-
rors. In some circumstances, it may be more efficient to
transmit uncompressed data approximately than to transmit
compressed data precisely. But to fully exploit approximate
storage and transmission, the approximate-computing com-
munity should explore compression mechanisms that avoid
this error-sensitive metadata or separate it from the error-
tolerant data so that metadata can be transmitted precisely.

4. Related Work
No single technique from the extensive literature on error-
resilient communication is a direct match for the scenario
we consider.

Previous work has proposed to expose and exploit physical-
layer errors for more efficient correction and retransmission.
While these approaches do not expose errors to the end-user
application, the techniques are potentially complementary to
ours and share our overall performance goals.

Sen et al. improve 802.11’s resilience by exploiting the
predictable structure of errors [8]. Jamieson and Balakrish-
nan [1] propose to use additional physical-layer information
to recover from more errors. Zhang et al. study frame re-
transmission in 802.11 networks and propose micro-acks [9],
a method of retransmitting only the missing or damaged por-
tions of a frame. Lin et al. push error correction to soft-
ware and mix correction with retransmission in ZipTx [4],
increasing throughput. Reimann and Winstein take a simi-
lar application-layer approach to error tolerance to extend
an outdoor network’s line-of-sight range by 70% [6].

5. Conclusion
Approximate computing research has primarily focused on
computation and memory systems—the traditional “core” of
computer systems. Networking hardware, however, can con-
sume resources on par with these traditional targets of archi-
tecture research, especially in mobile devices where energy
efficiency is paramount. Approximate wireless networking
can exploit the error resilience in transmitted data to avoid
paying the high costs of error correction and retransmission.

Acknowledgments
This work was supported in part by C-FAR, one of six
centers of STARnet, a Semiconductor Research Corporation
program sponsored by MARCO and DARPA.

References
[1] Kyle Jamieson and Hari Balakrishnan. PPR: Partial packet

recovery for wireless networks. In Proceedings of SIGCOMM,
August 2007.

[2] Phil Karn. DSP and FEC library.
http://www.ka9q.net/code/fec/, 2007.

[3] L-A. Larzon, M. Degermark, S. Pink, L-E. Jonsson, and
G. Fairhurst. The Lightweight User Datagram Protocol (UDP-
Lite). RFC 3828 (Proposed Standard), July 2004. Updated by
RFC 6335.

[4] Kate Ching-Ju Lin, Nate Kushman, and Dina Katabi. ZipTx:
exploiting the gap between bit errors and packet loss. In
Proceedings of MOBICOM, September 2008.

[5] Song Liu, Karthik Pattabiraman, Thomas Moscibroda, and
Benjamin G. Zorn. Flikker: Saving refresh-power in mobile
devices through critical data partitioning. In Proceedings of
ASPLOS, March 2011.

[6] Reina Riemann and Keith Winstein. Improving 802.11 range
with forward error correction. Technical Report MIT-CSAIL-
TR-2005-011, Massachusetts Institute of Technology, February
2005.

[7] Adrian Sampson, Jacob Nelson, Karin Strauss, and Luis Ceze.
Approximate storage in solid-state memories. In Proceedings
of MICRO, December 2013.

[8] Sayandeep Sen, Syed Gilani, Shreesha Srinath, Stephen
Schmitt, and Suman Banerjee. Design and implementation of
an “approximate” communication system for wireless media
applications. SIGCOMM Computer Communication Review,
41(4), August 2011.

[9] Jiansong Zhang, Haichen Shen, Kun Tan, Ranveer Chan-
dra, Yongguang Zhang, and Qian Zhang. Frame retransmis-
sions considered harmful: Improving spectrum efficiency using
micro-acks. In Proceedings of ACM MobiCom, August 2012.

3


