QBF-Based Synthesis of Optimal Word-Splitting in Approximate Multi-Level Storage Cells

Daniel E. Holcomb
University of Michigan
danholcomb@umich.edu
Kevin Fu
University of Michigan
kevinfu@umich.edu

Abstract
In applications such as multimedia that tolerate imprecise results, approximate computing techniques can sacrifice precision to save power or time. One aspect of approximate computing is imprecise storage in multi-level cells (MLCs). Computer words that are too large for a single MLC must be distributed across multiple approximate MLCs. The word-level imprecision depends on how the words are split across the MLCs. This work gives an automated synthesis approach for splitting words across MLCs. Given bounds on the imprecision of individual MLCs, the technique synthesizes solutions for splitting words across cells to minimize the worst-case imprecision at the word level. The technique is based on quantified Boolean formula solving, within an overall optimization loop. Worst-case word-level error is shown to vary by over an order of magnitude across otherwise comparable word-splitting alternatives.

Keywords Approximate Computing, Multi-Level Cells, QBF Solving, Synthesis

1. Introduction
Approximate computing techniques trade away precision to save power, energy, or time. The tradeoff is appealing in applications such as multimedia that are inherently tolerant of imprecision. Recent work demonstrates that approximate storage of data in non-volatile multi-level cells (MLCs) can speed up write operations by 1.7x in exchange for a quality loss of under 10% [10]. The data words on which computers operate are too large for storing in a single MLC, and must therefore be distributed across multiple approximate MLCs. The loss of precision at the word level depends on how the words are distributed across the approximate MLCs.

This work presents a synthesis approach for optimally storing data words across multiple approximate MLCs. The inputs to the synthesis are bounds on the worst-case error of the MLCs, and the output is a way to distribute data words across the MLCs such that the worst-case word-level error is minimized. The approach frames the synthesis problem as a quantified Boolean formula (QBF), within an overall optimization loop.

The specific contributions of this paper are as follows:

- We demonstrate that a previously proposed word-splitting has a word-level error that is good in the average case, but pathologically bad in the worst case.
- We present an automated QBF-based technique for formal synthesis of an optimal word-splitting solution, and validate the solution using random simulation.
- We use the synthesis technique to find a counter-intuitive approximate storage solution where optimal word-level precision is achieved by deliberately introducing small errors to written data.

2. Related Work
As technology scaling nears physical limits, maintaining a perfect error-free digital abstraction becomes ever more expensive in power, time, and silicon area. Workloads such as multimedia do not require perfect computation, and this has given rise to techniques for approximate computation, where an acceptable amount of precision is traded away to save costs. EnerJ is a Java extension that adds approximate data types, and its use can cut energy by up to 50% versus fully precise computation [9]. Microarchitectural support for approximate computing is provided in Truffle, where power is saved by processing approximate and precise data at different supply voltages [1].

In addition to imprecise computation, imprecise data storage can also save cost. Increasing DRAM refresh interval beyond point of first failure saves 20-25% of memory power in error-tolerant applications [4]. The use of error-inducing low voltages in flash memory is shown to decrease write power by 34% [8]. Similar techniques can be applied to multi-level cells (MLCs) in non-volatile memories. MLCs encode multiple bits of information per cell by allowing a wider variety of stored levels, instead of just the traditional “0” and “1” levels. For example, X4 memory stores 4 bits per cell by storing one of 16 discrete levels [12]. An error occurs in an MLC when the level read from the cell is not the exact level that was written. Due to the ordering of the stored levels, MLC errors may still produce data that is nearly correct, and this presents an opportunity for approximate computing. Approximate storage in phase-change MLCs is shown to offer 1.7x speedup in write operations [10]. In flash memory, an alternative to demarcating MLC levels with thresholds is the use of rank modulation [2] to encode data in the relative ordering of charge levels across cells.
2.1 QBF Solving

The quantified Boolean formula problem (QBF) is a Boolean satisfiability problem (SAT) with both universally (\(\forall\)) and existentially (\(\exists\)) quantified variables. SAT can therefore be viewed as a special case of QBF in which all variables are existentially quantified. A QBF problem is typically described in prenex normal form, where all variables are quantified at the start of the problem, and the formula follows in conjunctive normal form. Among the many publicly available QBF solvers, the experiments in this work are performed using the solver DepQBF [7][6]. DepQBF is a search-based QBF solver, and it speeds largely comes from its use of restarts and efficient techniques for uncovering and storing variable ordering [5].

3. Formulation

Figure 1 illustrates the problem of splitting 8-bit data word \(D\) over two 4-bit MLCs \(C_1\) and \(C_0\). The 4-bit value written to each cell \(C_i\) is denoted \(C_i^W\), and the 4-bit value being read is \(C_i^R\). The data word being written is \(D^W\), and the data word being read is \(D^R\). When writing data word \(D^W\), a mapping denoted \(S_W\) maps bit positions of \(D^W\) to the bit positions of \(C_1^W\) and \(C_0^W\), and these values are written to the MLCs. When reading a data word, \(C_i^R\) and \(C_0^R\) are read from the cells, and mapping \(S_R\) reconstructs data word \(D^R\).

Mapping \(S^R\) inverts \(S_W\), such that \(S_R(S_W(D^W)) = D^W\). If the cells are fully precise (i.e. \((C_1^W, C_0^W) = (C_1^R, C_0^R))\), then any \(S_R\) and \(S_W\) that are inverses will result in fully precise data words (i.e. \(D^W = D^R\)). To see this, first let \(D^R := S_R(C_1^R, C_0^R)\) which becomes on account of fully-precise cells \(D^R := S_R(S_W(D^W))\). Next, rewriting \((C_1^W, C_0^W) = S_W(D^W)\) yields \(D^R := S_R(S_W(D^W))\) which reduces to \(D^R := D^W\) whenever \(S_R\) inverts \(S_W\).

The mappings \(S_W\) and \(S_R\) are represented using a shared set \(S\) of Boolean variables. Let \(k\) be the number of MLCs, and \(n\) be the number of bits stored in each MLC; the width of the data word \(D\) is therefore \(kn\). The mapping between the data word and cells is represented by \(kn^2\) Boolean variables \(s_{i,j}\), where \(0 \leq i < kn\) and \(0 \leq j < kn\). If \(s_{i,j}\) is true, then \(S_W\) maps the \(j\)th bit of \(D^W\) to the \(i\)th among all MLC bits; and \(S_R\) maps the \(j\)th MLC bit to the \(i\)th bit of \(D^R\). Eq. 1 ensures that each mapping is between exactly one bit of \(D\) and one bit of an MLC.

\[
\prod_{j=0...kn-1} \left(\sum_{i=0...kn-1} s_{i,j} \right) = 1
\]

Under the assumption of approximate storage, it is only claimed that for each MLC the read value \((C_i^R)\) is similar within \(E_C\) levels to the written value \((C_i^W)\). Assuming that the difference in magnitude between the written and read value of each MLC is bounded by \(E_C\), the goal of synthesis is to minimize the worst-case difference in magnitude between \(D^W\) and \(D^R\), as this difference represents the word-level error. The task of synthesis is therefore to find an assignment to \(S\) that defines a correspondence between data word \(D\) and MLCs \(C_i\) that minimizes the worst case word-level error.

\[
\exists S \forall D^W \forall C^R \forall C^W \left((|C_1^W - C_1^R| \leq E_C) \land (|C_0^W - C_0^R| \leq E_C) \right) \implies (|D^W - D^R| \leq E_D)
\]

An equivalent formulation to Eq. 2 is given by Eq. 3. This formulation replaces independent variable \(D^W\) with variables \(C_1^W\) and \(C_0^W\), and computes as a dependent variable \(D^R := S_R(C_1^W, C_0^W)\), which holds because \((C_1^W, C_0^W) := S_W(D^W)\) and \(S_R\) inverts \(S_W\). While the formulations are equivalent, and shown to produce identical results, the formulation of Eq. 3 is found to be easier for the solver than is Eq. 2 (see Appendix A).

Figure 1. Mapping for write and read operations. At left is a write operation, where a data word \(D^W\) is distributed across two MLCs according to mapping \(S_W\). At right is a read operation where, according to mapping \(S_R\), data word \(D^R\) is reconstructed from the values read from the two MLCs.

3.1 Synthesis using QBF Solving

The QBF problem in Eq. 2 checks whether there exists a mapping that guarantees a worst-case word-level error of \(E_D\), given a worst-case cell-level error of \(E_C\).

The independent variables in Eq. 2 are (1) \(S\): the set of Boolean variables that determine the mappings \((S_W\) and \(S_R\)) between bits of the data word and bits of MLCs; (2) \(D^W\): the data word being written; and (3) \(C_i^R\) and \(C_i^W\): the values read from the MLCs.

Computed as a deterministic function of the independent variables are (1) \((C_1^W, C_0^W) := S_W(D^W)\): the values written to MLCs; and (2) \(D^R := S_R(C_1^W, C_0^W)\): the data word reconstructed from the values read from MLCs.

Eq. 2 then asks whether there exists mapping \(S\), such that if the written data word \(D^W\) maps to written MLC levels \((C_1^W, C_0^W)\), any cell levels \((C_i^R)\) that are within \(E_C\) of the written levels will map back to a word \(D^R\) that is within \(E_D\) of the written word \(D^W\).
\[\exists \forall C_1^W \forall C_0^W \forall C_1^R \forall C_0^R \\
(\left| C_1^W - C_1^R \right| \leq E_C) \land (\left| C_0^W - C_0^R \right| \leq E_C) \]
\[\implies (|S_R(C_1^W, C_0^W) - S_R(C_1^R, C_0^R)| \leq E_D) \quad (3) \]

3.2 Optimization

A binary search optimization loop performs iterated calls to the QBF solver to find a mapping \(S \) that minimizes the worst-case error \(E_D \). Each QBF call solves Eq. 3 with a particular constant for \(E_D \), and either synthesizes a value of \(S \) that guarantees the bound \(E_D \), or else determines that no such \(S \) exists. The total range searched for the minimal \(E_D \) is 1 to \(2^{kn} - 1 \), and therefore \(kn \) QBF calls are needed to complete the binary search.

4. Methodology

Each QBF problem is formulated by first constructing a combinational circuit in structural Verilog to implement the necessary logic for evaluating the property in Eq. 3. The inputs to the circuit are the Boolean variables comprising \(S \) and \(C_1^W, C_0^W, C_1^R, C_0^R \), and the constants to set \(E_C \) and \(E_D \). The output of the circuit is a single Boolean signal, denoted \(\phi \), representing the condition that synthesis must satisfy. This signal \(\phi \) is false when the inputs applied to the circuit satisfy \(|C_1^W - C_1^R| \leq E_C \) and \(|C_0^W - C_0^R| \leq E_C \), but not \(|D^W - D^R| \leq E_D \).

The mappings for \(S_R \) and \(S_W \) are defined according to the values assigned to the \(s_{i,j} \) variables in \(S \). The mappings are implemented in the circuit by multiplexers with \(s_{i,j} \) variables as one-hot encoded control inputs. In the implementation of \(S_W \), the value of the \(j \)th total bit to the MLCs is set by a multiplexer with select signals \(s_{0,j}, s_{1,j}, \ldots, s_{kn-1,j} \) and inputs \(d_0, d_1, \ldots, d_{kn-1} \). Likewise, in the implementation of \(S_R \), each bit \(d_i \) is assigned a bit from an MLC, with choice depending on select signals \(s_{i,0}, s_{i,1}, \ldots, s_{i, kn-1} \). If \(s_{i,j} \) is true, then \(S_W \) maps the \(j \)th bit of the data word to the \(j \)th bit of cells, and \(S_R \) maps the \(j \)th bit of cells back to the \(j \)th bit of the data word.

The combinational circuit is encoded into the CNF clauses of the QBF problem by translating each gate to clauses using the approach of Larrabee [3]. The CNF formula created in this way is satisfied by any assignment of values to variables that is consistent with the logic gates of the functions. Because the goal of synthesis is to ensure that property \(\phi \) holds, \(\phi \) is added to the CNF formula as a unit clause: now any variable assignment that satisfies the CNF formula is an assignment of values to variables that is consistent with the circuit logic and causes \(\phi \) to be true. Finding such an assignment is exactly the problem of SAT-based test generation [3], where the goal is to find any input pattern that satisfies a particular fault sensitization condition.

The inputs to the Verilog circuit are the variables that are either existentially or universally quantified in the QBF. Specifically, in the formulation of Eq. 3 these variables are the \((kn)^2\) bits of \(S \), and for each cell \(C_i \) \((0 \leq i < k)\) the \(n \) bits for \(C_i^W \) and the \(n \) bits for \(C_i^R \). The total number of Boolean input variables is therefore \((kn)^2 + 2kn \). As shown in Eq. 3, the \((kn)^2\) Boolean variables of \(S \) are existentially quantified, and the \(2kn \) Boolean variables for the \(C_i^W \) and \(C_i^R \) are universally quantified. A solution to the QBF problem gives an assignment to the \(S \) variables, such that the property \(\phi \) is guaranteed to hold for all possible assignments to the \(C_i^W \) and \(C_i^R \) variables.

Note that when a QBF problem is described in prenex normal form, all variables must have quantifiers. To accomplish this, any variable not explicitly quantified in a stated QBF problem is implicitly existentially quantified at the end of the explicitly quantified variables. This implicit existential quantifier indicates that these variables may take any value in a solution to the QBF problem.

5. Evaluation

Two variants of QBF-based synthesis are performed, and compared against a baseline approach of interleaved word-splitting. Interleaved word-splitting, shown in Fig. 2, is proposed by Sampson et al. [10] for minimizing the word-level impact of errors in MLCs.

In interleaved word-splitting, the more significant bits of a word (e.g. \(d_7 \) and \(d_6 \)) are mapped to the most significant bits of each MLC (e.g. \(c_{1,3} \) and \(c_{0,3} \)). The intuition behind interleaved word-splitting is that errors in imprecise MLCs are more likely to flip to the less significant bits of the cell than the more significant bits. For example, in a 4-bit MLC, all single-level errors (e.g. 0000 to 0001; 0001 to 0010; etc) will flip the cell’s LSB, while the only single-level errors that flip the cell’s MSB are transitions between the levels 0111 and 1000. Therefore, interleaved word-splitting minimizes the average word-level impact of the common case of single-level errors, by mapping the less significant bits of data words to the MLC bits that are most likely to flip.

![Figure 2. Interleaved word-splitting.](image-url)
5.1 Synthesis of Optimal Word-Splitting

Motivated by the pathologically bad worst-case word error with interleaving, the first problem addressed is synthesizing a word-splitting that minimizes worst-case error. Under the assumption that MLC error is no more than one-level per cell (i.e. $E_C := 1$), using the QBF formulation of Eq. 3, the binary search yields an optimal assignment to S that guarantees a word-level error magnitude of no more than 17 (i.e. $E_D := 17$). The runtimes for each QBF call in the binary search are shown in Table 1, and the optimal synthesized mapping is shown in Fig. 3.

The synthesized solution splits the data word into contiguous upper and lower blocks that are written to cells C_1 and C_0, respectively. In this solution, any single-level error in C_1 equates to a word error of 16, and any single-level error in C_0 equates to a word error of 1. This synthesized mapping is equivalent to an approach denoted “distributed analog” by Sarpeshkar [11] in his work on analog computation. Beyond reproducing Sarpeshkar’s result, a contribution of this work is that it produces the result through automated synthesis, and shows the result to be optimal for worst-case word error by giving a formal guarantee of optimality.

\[
\begin{array}{ccc}
 c_{1,3} & c_{1,2} & c_{1,1} \\
 d_7 & d_6 & d_5 \\
 c_{0,3} & c_{0,2} & c_{0,1} \\
 d_3 & d_2 & d_1 \\
 c_{0,0} & & \\
\end{array}
\]

Figure 3. Synthesized optimal word-splitting according to Eq. 3.

<table>
<thead>
<tr>
<th>E_D</th>
<th>solution exists</th>
<th>runtime [seconds]</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>no</td>
<td>12.05</td>
</tr>
<tr>
<td>17</td>
<td>yes</td>
<td>16.81</td>
</tr>
<tr>
<td>18</td>
<td>yes</td>
<td>15.28</td>
</tr>
<tr>
<td>20</td>
<td>yes</td>
<td>11.58</td>
</tr>
<tr>
<td>24</td>
<td>yes</td>
<td>11.13</td>
</tr>
<tr>
<td>32</td>
<td>yes</td>
<td>10.94</td>
</tr>
<tr>
<td>64</td>
<td>yes</td>
<td>13.16</td>
</tr>
<tr>
<td>128</td>
<td>yes</td>
<td>10.19</td>
</tr>
</tbody>
</table>

Table 1. Results of QBF solving Eq. 3 at each step of the binary search to minimize word error E_D. E_D is the bound on $|D^W - D^R|$ in each call to the QBF solver. Whenever a solution exists for the checked value of E_D, the solution is an assignment to the $s_{i,j}$ variables that defines the mappings between data and cells. Each call to the QBF solver has 64 existentially quantified variables, 16 universally quantified variables, 1951 total variables, and 5182 CNF clauses. The synthesized optimal result is the word-splitting shown in Fig. 3.

5.2 Synthesis of Optimal Word-Splitting with Remapping

The next synthesis formulation finds that, counter-intuitively, a smaller word-level error bound is possible by making intentional errors in writing to MLCs. This result is achieved by first synthesizing the erroneous writes at the MLC level, and then back-propagating them to the word-level, where they are ultimately implemented.

To allow synthesis the freedom to work around any pathological corner cases, among the sixteen 4-bit levels that can be written to C_1, any two are allowed to be remapped. The two levels that are remapped can be any of the sixteen possible levels, and the target level that each is remapped to can also be any of the sixteen possible levels. This remapping at the cell level is denoted M_C, and M_C is implemented using 16 Boolean variables m_0, \ldots, m_{15}. Each of the remapped levels uses eight of the m_i variables: four to select the level to remap, and four to choose what level it remaps to. The m_i variables that define M_C are added to the existentially quantified variables in the QBF problem, so that synthesis will assign them values that guarantee the worst-case word-level bound E_D. In the formulation of Eq. 4, the level that would be written to C_1 in absence of remapping is denoted C_1^W, and the potentially erroneous level that is written after the remapping is $M_C(C_1^W)$.

\[
\exists \exists \forall M_C \forall C_1^W \forall C_0^W \forall C_1^R \forall C_0^R \left(\left(|M_C(C_1^W) - C_1^R| \leq E_C \right) \land \left(|C_1^W - C_0^R| \leq E_C \right) \right) \implies \left(|S_R(C_1^W, C_0^W) - S_R(C_1^R, C_0^R)| \leq E_D \right)
\]

(4)

Figure 4. Synthesized write operations with remapping. At left is the synthesized version where the remapping is applied on the cell inputs, and at right is the final version where remapping is applied to the data word before splitting.

Table 2 shows the QBF solver runtimes when using the QBF formulation of Eq. 4 inside of a binary search to minimize E_D. The optimization loop terminates with a synthesized result that guarantees a worst-case word-level error bound of 10. The synthesized result assigns values to the
While the synthesis problem of Eq. 4 solves for \(S \) and \(M_C \), ultimately the remapping should be applied at the word level instead of the cell level. Given that \(S \) is known from synthesis, \(M_C \) is back-propagated to the word level using knowledge of which bits of the data word will be mapping to cell \(C_1 \). This corresponds to transitioning from the schematic at left in Fig. 4 to the schematic at right in Fig. 4. The mapping \(M_C \) (Eq. 5) when applied at the word level becomes \(M_D \) (Eq. 6).

Overall, the synthesized word-splitting with remapping is applied as follows. Given an 8-bit data word \(D^W \) to be written in two 4-bit MLCs, first apply function \(M_D \); this introduces error if the value of \(D^W \) is modified by \(M_D \). The output of \(M_D \) is written across the cells using the mapping shown in Fig. 5. When reading the word from the cells, the level read out of each cell can differ by one level from the value that was written. Finally, mapping \(S_R \) is applied to reconstruct \(D^R \). The difference between \(D^R \) and \(D^W \), including both the error due to remapping by \(M_D \) and the error due to imprecise cells, can never exceed 10. Since the error bound using word-splitting alone was 17, the worst-case bound is improved by the addition of intentional errors on the written values.

Note that in this synthesis result, even if the value read from each cell matches exactly to the value written, \(D^R \) may still not match \(D^W \) due to the error introduced by the remapping by \(M_D \) during the write process. Furthermore, note that a bit-flip in position 0 of cell \(C_1 \) (i.e. \(c_{1.0} \) in Fig. 5) equates to word error of 2 because it maps to \(d_1 \), while a bit-flip in position 1 of the same cell (i.e. \(c_{1.1} \)) will cause a word error of only 1 because it maps to the LSB \(d_0 \). Since single-level errors are more likely to flip bit 0 (i.e. \(c_{1.0} \)) of the cell, a better average-case word error may be obtained by having \(c_{1.1} \) correspond to \(d_1 \), and \(c_{1.0} \) correspond to \(d_0 \). However, a synthesis that is guided by worst-case has no reason to prefer this alternative solution over the one in Fig. 5.

\[
M_C(C_1^W) = \begin{cases}
1001 & \text{if } C_1^W = 1000 \\
0110 & \text{if } C_1^W = 0111 \\
C_1^W & \text{otherwise}
\end{cases} \tag{5}
\]

\[
M_D(D^W) := \begin{cases}
1[d_{6..3}]010 & \text{if } D^W = 1[d_{6..3}]000 \\
0[d_{6..3}]101 & \text{if } D^W = 0[d_{6..3}]\underbracemath{111}{111} \\
D^W & \text{otherwise}
\end{cases} \tag{6}
\]

5.3 Comparison of Results

The interleaved word-splitting is compared to the two optimal word-splittings synthesized using QBF solving in this paper. The first of the synthesized results uses only word-splitting, and the second using word-splitting and level remapping. The synthesis technique optimizes for worst-case word error, but it is instructive to also consider the distribution of word errors and average word error. Note that while the worst-case bounds are an absolute result that holds for any probability of single-level errors, comparisons of average case depend on the probabilities of single level MLC errors.

Fig. 6 shows the distribution of word-level error if each cell is assumed to have a very high 50% probability of a single-level error, and the error is equally likely to be an increase or decrease in level. On 25% of trials, the two cells are both error free.

- The upper bound on word error in the interleaved word splitting is 129, by far the highest among the three results. However, the interleaved approach has the lowest probability of a word-level error exceeding 5.
- In the synthesized word-splitting (Sec. 5.1), the worst-case word error is 17. The word-level error contribution of cell \(C_1 \) can only be either -16,0, or 16, and the word-level contribution of single-level errors for cell \(C_0 \) is -1,0, or 1, and therefore the only possible magnitudes of word errors are 0,15,16, and 17.
- In the synthesized solution for word-splitting with remapping (Sec. 5.1), the worst-case word error is 10. Note that
the probability of having a word error of 0 is less than 25%, because the remapping M introduces a systematic error even when the cells are error free.

Figure 7 shows the average word error as a function of the probability of a single-level error in each MLC. When the cell error probability is 0, the only approach to have non-zero word-level error is the synthesized word-splitting with remapping. This error is on account of the remapping, which introduces a systematic error for the remapped levels. As the probability of cell error increases, the synthesized result with remapping has the best average-case error, in addition to the best worst-case error of 10.

While MLC errors will generally occur as transitions between neighboring levels as assumed in this work, future work will explore an error model that is more closely matched to the particular errors of a specific MLC technology. Other QBF solving techniques such as quantifier instantiation can be applied. To address the limitation of having no preference among solutions with equivalent worst-case word-level error bounds (Sec. 5.3), the synthesis technique can be extended to consider all solutions that guarantee the optimal worst-case bound, and to choose among them based on a metric such as average-case word-level error.

Acknowledgement: This work was supported in part by C-FAR, one of six centers of STARNet, a Semiconductor Research Corporation program sponsored by MARCO and DARPA, and NSF CNS-0845874. Any opinions, findings, conclusions, and recommendations expressed in these materials are those of the authors and do not necessarily reflect the views of the sponsors.

References

A. QBF Formulation

Fig. 8 shows the runtime for solving the word-splitting synthesis problem as in Sec. 5.1, except using linear search instead of binary search. The formulation using Eq. 3 is the same experiment as Table 1, except with different values of E_D. The two formulations of the problem are equivalent, and both formulations produce the same optimal result and the same optimal bound of $E_D = 17$. Future work will investigate why the formulation of Eq. 3 is solved considerably faster than that of Eq. 2 for bounds less than 17 (i.e. where the problem is unsatisfiable.)

![Figure 8. Runtime of QBF solver when checking various bounds using two equivalent formulations of the same QBF problem (Eq. 2 and Eq. 3). The optimal synthesis result in both cases has a worst-case bound of $E_D = 17$. All synthesis attempts where E_D is less than 17 fail, and in these cases, the encoding of Eq. 3 is significantly faster. All synthesis attempts when E_D is greater than or equal to 17 are successful, and in these cases, the choice of encoding has a smaller impact on runtime.](image-url)